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Abstract. We describe a class of groups with the property that the finite

ones among them are precisely the complex reflection groups of rank two.

This situation is reminiscent of Coxeter groups, among which the finite ones

are precisely the real reflection groups. We also study braid relations between

complex reflections and indicate connections to an axiomatic study of root

systems and to the Shephard-Todd “collineation groups.”

1. Introduction

A complex reflection group is a finite group of transformations of a complex vector
space generated by complex reflections or pseudo-reflections, i.e., transformations
that fix some hyperplane. Any finite Coxeter group can naturally be thought of
as a complex reflection group, simply by complexifying the vector space on which
the reflection representation acts, but there are many complex reflection groups
that do not arise in this way. Recent work by a number of people has shown that
various structures attached to Weyl groups, can be generalized to complex reflection
groups, even though there is no analogue of the underlying algebraic group.

Many aspects of the theory of finite Coxeter groups are actually present in the
much broader setting of all Coxeter groups. Indeed, it should be remembered that
the following characterization of reflection groups is a theorem, not a definition:

Theorem 1.1 (Coxeter). A group is a real reflection group if and only if it is
finite and a Coxeter group. Moreover, for such a group, the Coxeter presentation
is uniquely determined.

Philosophically, we might even say that most features of the theory of real re-
flection groups (length functions, Bruhat order, deletion and exchange conditions,
etc.) are primarily features of the theory of Coxeter groups, and that the remark-
able theorem above allows these features to be applied to real reflection groups.

In this paper, we seek a characterization in the spirit of Theorem 1.1 of complex
reflection groups of rank two. Of course, these groups have been known since
the classification by Shephard and Todd [9] of all complex reflection groups, but a
suitable general setting in which to study these groups, in the spirit of Theorem 1.1,
is not known.

Given three positive integers a, b, and c, let us define a group

(1) J( a b c

1 1 1 ) = 〈s, t, u | sa = tb = uc = 1, stu = tus = ust〉.
Next, let a′, b′, and c′ be three pairwise relatively prime positive integers that divide
a, b, and c, respectively. We define

(2) J( a b c

a′ b′ c′
) =

the smallest normal subgroup of J( a b c

1 1 1 )

containing sa′

, tb
′

, and uc′ .
1
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J BMR ST Triples

J( 2 2 c ) cÂÁÀ¿»¼½¾'&%$Ã!"#2ÂÁÀ¿»¼½¾
2ÂÁÀ¿»¼½¾ G(2c, 2, 2)

J( 2 2 c

2 ) ÂÁÀ¿»¼½¾2 ÂÁÀ¿»¼½¾c G(c, 1, 2) (2, c, 4)

J( 2 2 cd

d )
2ÂÁÀ¿»¼½¾
2ÂÁÀ¿»¼½¾cÂÁÀ¿»¼½¾

2d+1

G(2cd, 2d, 2)

J( 2 2 d

d ) ÂÁÀ¿»¼½¾2
2d ÂÁÀ¿»¼½¾2 G(2d, 2d, 2) (2, 2, 2d)

J( 2 2 cd

2 d )
2ÂÁÀ¿»¼½¾
2ÂÁÀ¿»¼½¾cÂÁÀ¿»¼½¾

d+1

G(cd, d, 2)

J( 2 2 d

2 d ) ÂÁÀ¿»¼½¾2
d ÂÁÀ¿»¼½¾2 G(d, d, 2) (2, 2, d)

J( 2 3 5 ) 2ÂÁÀ¿»¼½¾'&%$Ã!"#3ÂÁÀ¿»¼½¾
5ÂÁÀ¿»¼½¾ G19

J( 2 3 5
2 ) ÂÁÀ¿»¼½¾3 ÂÁÀ¿»¼½¾5 G18(3, 5, 4), (3, 5, 6), (3, 5, 10)

J( 2 3 5
3 ) ÂÁÀ¿»¼½¾2 ÂÁÀ¿»¼½¾5 G17 (2, 5, 6), (2, 5, 10)

J( 2 3 5
5 ) ÂÁÀ¿»¼½¾2

10 ÂÁÀ¿»¼½¾3 G21 (2, 3, 10)
J( 2 3 5

2 3 ) ÂÁÀ¿»¼½¾5 ÂÁÀ¿»¼½¾5 G16 (5, 5, 3), (5, 5, 5)

J( 2 3 5
2 5 ) ÂÁÀ¿»¼½¾3

5 ÂÁÀ¿»¼½¾3 G20 (3, 3, 5)

J( 2 3 5
3 5 ) 2ÂÁÀ¿»¼½¾ 5'&%$Ã!"#2ÂÁÀ¿»¼½¾

2ÂÁÀ¿»¼½¾ G22

J BMR ST Triples

J( 1 a b ) ÂÁÀ¿»¼½¾a ÂÁÀ¿»¼½¾b (a, b, 2)

J( 2 3 3 ) 2ÂÁÀ¿»¼½¾'&%$Ã!"#3ÂÁÀ¿»¼½¾
3ÂÁÀ¿»¼½¾ G7

J( 2 3 3
2 ) ÂÁÀ¿»¼½¾3 ÂÁÀ¿»¼½¾3 G5 (3, 3, 4)

J( 2 3 3
3 ) ÂÁÀ¿»¼½¾2 ÂÁÀ¿»¼½¾3 G6 (2, 3, 6)

J( 2 3 3
2 3 ) ÂÁÀ¿»¼½¾3 ÂÁÀ¿»¼½¾3 G4 (3, 3, 3)

J( 2 3 4 ) 2ÂÁÀ¿»¼½¾'&%$Ã!"#3ÂÁÀ¿»¼½¾
4ÂÁÀ¿»¼½¾ G11

J( 2 3 4
2 ) ÂÁÀ¿»¼½¾3 ÂÁÀ¿»¼½¾4 G10 (3, 4, 4)

J( 2 3 4
3 ) ÂÁÀ¿»¼½¾2 ÂÁÀ¿»¼½¾4 G9 (2, 4, 6)

J( 2 3 4
2 )

2ÂÁÀ¿»¼½¾
3ÂÁÀ¿»¼½¾2ÂÁÀ¿»¼½¾

5

G15

J( 2 3 4
4 ) ÂÁÀ¿»¼½¾2

8 ÂÁÀ¿»¼½¾3 G14 (2, 3, 8)
J( 2 3 4

2 3 ) ÂÁÀ¿»¼½¾4 ÂÁÀ¿»¼½¾4 G8 (4, 4, 3)

J( 2 3 4
3 2 ) 2ÂÁÀ¿»¼½¾'&%$Ã!"#WVUTPQRS

5 4
2ÂÁÀ¿»¼½¾
2ÂÁÀ¿»¼½¾ G13

J( 2 3 4
3 4 ) 2ÂÁÀ¿»¼½¾'&%$Ã!"#ÂÁÀ¿»¼½¾2ÂÁÀ¿»¼½¾

2ÂÁÀ¿»¼½¾ G12

Table 1. The complex reflection groups of rank 2.

(The relative primality assumption is required for the uniqueness part of the the-
orem below.) These groups will be referred to colloquially throughout the paper
as “J-groups.” We usually omit 1’s from the second row of parameters. The main
result of the paper is the following:

Theorem 1.2. A group is a complex reflection group of rank two if and only if it
is a finite J-group. Moreover, for such a group, the parameters a, b, c, a′, b′, and
c′ are uniquely determined up to permutation.

All the rank-two complex reflection groups are listed in Table 1. For each group,
we identify the corresponding finite J-group; we give the Broué-Malle-Rouquier
(BMR) presentation from [4]; and we give the Shephard-Todd (ST) designation
from [9]. In the last column, we list the associated admissible triples (see Section 3).

Of course, this theorem is interesting only if there are important facts about
rank-two complex reflection groups whose proofs can be carried out in the setting
of J-groups. As a step in this direction, in a forthcoming paper [1], the authors
hope to show how to associate a “Hecke-like” algebra to each J-group (and, indeed,
to a much larger class of groups as well) that (i) is a free module over a suitable
ring of Laurent polynomials, (ii) admits a natural basis indexed by elements of
the J-group, and (iii) has a specialization isomorphic to the group algebra of the
J-group, in which the aforementioned natural basis becomes the natural basis of
the group algebra.

A broad outline of the proof is as follows: after laying some groundwork in
Section 2, we introduce and study “admissible triples” in Section 3. These are
ordered triples of integers (a, b, l) that are attached to pairs of reflections that



ON RANK-TWO COMPLEX REFLECTION GROUPS 3

generate a finite group. In Section 4, we show that finding the finite J-groups is
equivalent to classifying those admissible triples (a, b, l) in which l is even. Finally,
in Sections 5 and 6, we actually classify all admissible triples. (Admissible triples
have previously been defined and classified by Hughes and Morris [6], but there
seems to be a gap in their work: see Remark 3.18.)

The full classification of admissible triples is more information than we need in
order to prove Theorem 1.2, but it finds application in Section 7, where we use
it to investigate root systems for complex reflection groups, following a definition
recently proposed by Nebe [8] (cf. Cohen’s work [5] on a different notion of root
system in rank at least 3).

Finally, recall that the method of the original Shephard-Todd classification gave
a natural arrangement of the exceptional groups (i.e., those not in the infinite
series G(r, p, n)) into families. Remarkably, for rank-two groups, these Shephard-
Todd families coincide with the grouping in Table 1 by J-group parameters. We
conclude the paper in Section 8 with an explanation for this phenomenon.

It should be stressed that hardly any of the facts about complex reflection groups
that are proved in this paper are new. Rather, it is the methods of proof and the
perspective of having J-groups in mind that hold interest. Indeed, it is expected
that with a more-developed theory of these groups, it should be possible to give a
proof of Theorem 1.2 that is independent of the classification of complex reflections
groups. That is not achieved in this paper, but an attempt has nevertheless been
made to keep references to the classification to a minimum: specifically, we only
refer to the presentations given in [4] to make the identifications listed in Table 1,
and to establish the uniqueness asserted in Theorem 1.2.

We would like to thank M. Broué and R. Pollack for helpful conversations.

2. Hermitian Spaces over Number Fields

According to, e.g., [2, Propositon 7.1.1], every complex reflection group can
actually be realized as a reflection group over some finite abelian extension of Q.
That is the context in which we will work. Throughout the paper, K will denote
such a field, and V will be a K-vector space (usually 2-dimensional). ZK will
denote the ring of algebraic integers in K, and µK will denote the group of roots of
unity of K. We also fix a generator η of µK , and we write m for the order of µK .
Any abelian number field has a unique automorphism¯: K → K that extends to
complex conjugation on C under any imbedding K ↪→ C. The existence of such a
map means that we can speak of “Hermitian forms” on K-vector spaces. We adopt
the convention that Hermitian forms are conjugate-linear in the first variable and
linear in the second.

Definition 2.1. A Hermitian form on a K-vector space V is said to be definite if,
for every imbedding K ↪→ C, the corresponding induced form on VC = V ⊗K C is
definite (i.e., either positive definite or negative definite).

Remark 2.2. In general, even a definite Hermitian form cannot be described as
being “positive” or “negative” definite without fixing an imbedding of K into C.
For example, take K = Q(

√
2), and let (, ) be the form on K2 corresponding to the

quadratic form
√

2x2 +
√

2y2. It is clear that this form induces a positive definite
form on C2 under one imbedding K ↪→ C, and a negative definite form under the
other one.
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Also, over C, definiteness of a Hermitian form is equivalent to the condition
that (x, x) 6= 0 for all nonzero x, but this equivalence does not hold in general

over number fields. Again for K = Q(
√

2), consider the form corresponding to the

quadratic form x2 +
√

2y2. Under the imbedding which sends
√

2 to a negative real
number, this form induces an indefinite form on C2: indeed, v = (21/4, 1) ∈ C2 is
a vector satisfying (v, v) = 0. However, there are no vectors in K2 satisfying that
equation.

The following criterion for deciding whether a given form is definite will play a
central role in the classification of admissible triples.

Lemma 2.3. Let {x, y} be a basis for a 2-dimensional K-vector space V , endowed
with a nondegenerate Hermitian form (, ). Assume that (x, x) and (y, y) are both
nonzero. Then the form (, ) is definite if and only if the inequalities

(3) 0 <
(x, y)(y, x)

(x, x)(y, y)
< 1

hold under every imbedding of K into C.

Proof. With respect to a given imbedding of K into C, the form (, ) is positive
(resp. negative) definite if and only if the matrix

B =

(
(x, x) (x, y)
(y, x) (y, y)

)

is positive (resp. negative) definite. Now, B is positive definite if

(4) (x, x) > 0 and detB = (x, x)(y, y) − (x, y)(y, x) > 0.

Since (x, y) and (y, x) are complex conjugates of one another, the product (x, y)(y, x)
is necessarily a positive real number. Using this observation, it is readily verified
that the conditions in (4) imply the inequalities in (3). Similarly, if B is negative
definite, then (x, x) < 0 and detB > 0, and again one can deduce (3).

Conversely, if (3) holds, then, since (x, y)(y, x) is positive, we see immediately
that (x, x)(y, y) > (x, y)(y, x) > 0. Therefore, detB > 0, so B must be either
positive definite or negative definite. ¤

We will also require the following elementary result:

Lemma 2.4. If G is a finite group acting on a K-vector space V , then there
is a definite nondegenerate G-invariant Hermitian form on V . If the G-action is
irreducible, then in fact every G-invariant Hermitian form on V is a scalar multiple
of that one (and therefore either nondegenerate and definite, or zero).

The proof of this fact (which we omit) employs the usual “unitary trick,” and,
for the second part, Schur’s lemma, but a little extra care is required because the
meaning of “definite” over K is subtler than it is over C.

Finally, we require a criterion for deciding whether certain matrix groups over K
are finite. Recall that there is a one-to-one correspondence between n×n Hermitian
matrices over K and Hermitian forms on Kn: if B is a Hermitian matrix, we denote
the corresponding form by (, )B . We say that a Hermitian matrix B is definite if
the form (, )B is (equivalently, if every imbedding K ↪→ C sends B to a definite
complex matrix).

We write Un(ZK , B) for the group of n × n invertible matrices with entries in
ZK that preserve B.
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Proposition 2.5. Let B be a nonzero n × n Hermitian matrix, and let G ⊂
Un(ZK , B) be a group that acts irreducibly on Kn. G is finite if and only if B
is definite.

Proof. If G is finite, the definiteness of B is a consequence of Lemma 2.4. Con-
versely, suppose that B is definite.

For any A ∈ Un(ZK , B), note that the characteristic polynomial of A is a monic
polynomial of degree n with coefficients in ZK . It follows that the eigenvalues of A
are algebraic integers of degree at most n over K. Let K0 be the maximal totally
real subfield of K, and let L be the smallest Galois extension of K0 containing both
K and the splitting field of the characteristic polynomial of A. Since the complex
conjugation map¯: K → K may be regarded as an element of Gal(K/K0), it can
be extended to an automorphism¯: L→ L.

We can therefore regard B as a Hermitian matrix over L, and (, )B as a Hermitian
form on Ln. Now, if λ is an eigenvalue of A, and x ∈ Ln is a corresponding
eigenvector, we have

(x, x)B = (Ax,Ax)B = (λx, λx)B = λλ̄(x, x)B .

Since B is definite, (x, x)B is nonzero, so we see that λλ̄ = 1.
Next, sinceK is a Galois extension of Q, the restriction of any automorphism σ ∈

Gal(L/Q) to K is an automorphism of K. In particular, Bσ is a Hermitian matrix
with coefficients in K, Aσ is an element of Un(ZK , B

σ), and λσ is an eigenvalue of
Aσ. By the argument given above, we again have λσλσ = 1. In other words, λ is
an algebraic integer all of whose conjugates over Q have complex absolute value 1.
It is an elementary fact that any such element is a root of unity.

Finally, we note that there are only finitely many roots of unity of degree at
most n over K, so the set Λ of all eigenvalues of elements of Un(ZK , B) must be
finite. As a result, the image of the trace map tr : Un(ZK , B) → K must also be
finite. Let T denote this image.

For the remainder of the proof, we fix an imbeddingK ↪→ C. With respect to this
imbedding, we regard B as a complex Hermitian matrix, and we regard Un(ZK , B)
as a subgroup of the Lie group Un(C, B) of complex matrices preserving B. Now,
the identity matrix is the unique element of Un(ZK , B), and indeed of Un(C, B),
that has trace n. Consider the open set

V = C r (T r {n}).
We see that tr −1(V ) is an open subset of Un(C, B) that contains no elements
of Un(ZK , B) other than the identity matrix. Therefore, Un(ZK , B) is a discrete
subgroup of Un(C, B). Now, since B is positive definite, Un(C, B) is compact, so it
follows that Un(ZK , B) is finite, as is its subgroup G. ¤

3. Admissible Triples and Hughes-Morris Polynomials

In this section, we investigate pairs of reflections in K-vector spaces. To review,
recall that just as over C, a reflection is any finite-order linear transformation
of a vector space that fixes a hyperplane (called its reflecting hyperplane). Such
a map always has a one-dimensional eigenspace, complementary to its reflecting
hyperplane, on which it acts by a root of unity. We call this eigenspace the root
line of the reflection, and we call any nonzero point on the line a root. (This last
definition will be replaced by a more specific notion when we come to root systems
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in Section 7.) Finally, we recall that two reflections s and t are said to satisfy a
braid relation of length l if

sts · · ·
︸ ︷︷ ︸

l factors

= tst · · ·
︸ ︷︷ ︸

l factors

.

We also introduce the following new terminology:

Definition 3.1. (1) A reflection of order a is said to be elementary if its non-
trivial eigenvalue is ηm/a.

(2) A triple of positive integers (a, b, l), where a ≤ b, is called an admissible
triple if there exist elementary reflections s and t of some K-vector space,
of orders a and b respectively, that generate a finite group, and if l is the
length of the shortest braid relation they satisfy.

Of course, any reflection has a power that is an elementary reflection of the same
order. It is clear that any reflection group may be assumed to be generated by
elementary reflections.

In this section, we develop the tools necessary to classify all admissible triples,
and at the end of the section, we state the classification theorem. The actual work
of classifying them will be done in Sections 5 and 6.

The notion of “admissible triple” that we use here is closely related to that
introduced by Hughes and Morris [6]. That paper also provides a classification of
admissible triples, but there appears to be a gap in their work: they assert that
admissible triples are in bijection with isomorphism classes of complex reflection
groups generated by two reflections, but this is not borne out by our Theorem 3.14.
The precise nature of the discrepancy is explained in Remark 3.18. Nevertheless,
their paper contains some valuable ideas. The main tool of this section, the Hughes-
Morris polynomials to be defined below, are taken directly from their work. In
addition, the application of admissible triples to Nebe root systems in Section 7
is inspired by their use of admissible triples to study root systems in the sense of
Cohen [5].

The easiest example of an admissible triple arises when the two reflections have
orthogonal root lines (with respect to some definite Hermitian form invariant under
the group generated by the two reflections). In this case, the root line of each
reflection lies in the reflecting hyperplane of the other, so it is evident that the
two reflections commute. That is, they satisfy a braid relation of length 2. We
can construct such commuting reflections of any orders whatsoever, so every triple
(a, b, 2) with 2 ≤ a ≤ b is admissible.

The problem, then, is to understand admissible triples (a, b, l) with l ≥ 3. Our
main tool will be a certain family of polynomials whose roots govern braid relations
of reflections. Throughout, V will be a 2-dimensional K-vector space, and s and t
will be elementary reflections of V whose root lines neither coincide nor are orthog-
onal. It follows that neither s nor t preserves the other’s eigenspaces. Therefore,
the group W generated by s and t acts irreducibly on V .

We do not assume that W is finite, but we do assume that s and t satisfy some
braid relation. We also assume that V is endowed with a W -invariant Hermitian
form (, ), with the additonal property that (α, α) and (β, β) are both nonzero,
where α and β are roots for s and t, respectively. By the irreducibility of V as a
W -representation, this form is unique up to scalar multiple. (If W happens to be
finite, Lemma 2.4 both guarantees the existence of such a form and tells us that it
is definite.)
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Let a and b be the orders of s and t, respectively, and let ω = ηm/a and ξ = ηm/b

be their respective nontrivial eigenvalues. Since s and t both preserve (, ), we can
give formulas for their action on V as follows:

s(x) = x− (1 − ω)(α, α)−1(α, x)α

t(x) = x− (1 − ξ)(β, β)−1(β, x)β

Let us define α∨ = (1 − ω)(α, α)−1α and β∨ = (1 − ξ)(β, β)−1β, so the preceding
formulas become

s(x) = x− (α∨, x)α, t(x) = x− (β∨, x)β.

Next, we define

N = Ns,t = (α∨, β)(β∨, α).

(The notation is evidently reminiscent of that used for roots and coroots when
studying Weyl groups; this analogy will be fully developed in Section 7.) Note that
since we have assumed that (α, β) 6= 0, it is necessarily the case that N 6= 0.

It turns out that the quantity N , the order of the braid relation of s and t, and
the fact that these reflections generate a finite group are all intimately related. To
explicate this relationship, we introduce a family of polynomials associated to the
pair s, t, called Hughes-Morris polynomials, as follows:

f0(x) = 0 f2k(x) = f2k−1(x) + ξf2k−2(x)(5)

f1(x) = 1 f2k+1(x) = xf2k(x) + ωf2k−1(x)(6)

In this section, we will show how these polynomials can be used to study the action
of st on V , and to pin down the value of Ns,t. (This is not quite the definition used
in Hughes-Morris’ paper [6]. If we denote the polynomials of [6] by fHM

k , then the
relationship is

fk(x) = (1 − ω)k(1 − ξ)kfHM
k ((1 − ω)−1(1 − ξ)−1x).

The definition we have given here will be more convenient for the calculations we
will carry out.)

Lemma 3.2. We have the following relations:

(st)kα = f2k+1(N)α− (β∨, α)f2k(N)β

t(st)kα = f2k+1(N)α− (β∨, α)f2k+2(N)β

Lemma 3.3. If k ≥ 4, then fk(x) = (x+ ω + ξ)fk−2(x) − ωξfk−4(x).

The next lemma partly describes the relationship between Hughes-Morris poly-
nomials and braid relations.

Lemma 3.4. If s and t satisfy a braid relation of length l, then fl(N) = 0.

Proof. If l is even, then (st)l/2 = t(st)l/2−1s. From Lemma 3.2, we have

(st)l/2α = fl+1(N)α− (β∨, α)fl(N)β,

t(st)l/2−1sα = t(st)l/2−1ωα = ωfl−1(N)α− ω(β∨, α)fl(N)β.

This implies that fl(N) = ωfl(N), and therefore that fl(N) = 0. A similar calcu-
lation yields the same result if l is odd. ¤
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Conversely, it is also true that if fl(N) = 0, then s and t satisfy a braid relation
of length l. Before proving that, however, we need a description of the solutions of
fk(x) = 0.

Lemma 3.5. Suppose that K contains a square root z of ωξ, and let ζ be a root of
unity other than ±1. We have

f2k(z(ζ + ζ−1) − ω − ξ) = zk−1 ζ
k − ζ−k

ζ − ζ−1
,

f2k+1(z(ζ + ζ−1) − ω − ξ) = zk (ζk+1 − ζ−k−1) − zω−1(ζk − ζ−k)

ζ − ζ−1
.

Proof. This is an elementary exercise in proof by induction: it is simply necessary
to verify that these formulas satisfy the recurrence relations of (5). We omit the
details. ¤

Corollary 3.6. Let k ≥ 3. Suppose that K contains a square root z of ωξ, as well
as all the kth roots of unity. Then K contains the splitting field of fk(x). If k is
even, the solutions of the equation fk(x) = 0 are exactly the elements of

{z(ζ + ζ−1) − ω − ξ | ζk = 1, ζ 6= ±1},
each with multiplicity 1. If k is odd and we also assume that ω = ξ, then the
solutions of fk(x) = 0 are

{−ω(ζ + ζ−1) − 2ω | ζk = 1, ζ 6= ±1},
each with multiplicity 1.

Remark 3.7. At first glance, it seems that if k is even and if we replace z by −z,
i.e., if we choose the other square root of ωξ, then we must also replace each ζ
by −ζ in order for the above formula for the solutions of fk(x) = 0 to hold. But
ζk = 1 if and only if (−ζ)k = 1, so in fact the set of solutions described above is
independent of the choice of z.

Proof of Corollary 3.6. We quickly verify that each element of the form described
is indeed a solution of fk(x) = 0, by glancing at the formulas of Lemma 3.5. Now,
if k is even, we have found k/2−1 distinct solutions, and if k is odd, we have found
(k − 1)/2 of them. But it follows from (5) that fk(x) has degree k/2 − 1 if k is
even, and degree (k − 1)/2 if k is odd. Therefore, the above solutions must be all
the solutions of fk(x) = 0, and they must each occur with multiplicity 1. ¤

Proposition 3.8. The shortest braid relation satisfied by s and t has length l if
and only if l is the smallest positive integer such that fl(N) = 0.

Proof. One direction of this statement is given by Lemma 3.4. For the other direc-
tion, we must show that if fl(N) = 0, then in fact s and t satisfy a braid relation
of length l.

Let {f ′k(x)} be the family of Hughes-Morris polynomials in which we exchange
the roles of s and t, and therefore also α and β, as well as ω and ξ. Now, the
formulas in Corollary 3.6 are invariant under exchange of ω and ξ, so we see that
if k is even, or if ω = ξ, then the set of solutions of fl(x) = 0 coincides with that of
f ′l (x) = 0.
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Now, suppose l is even and fl(N) = 0. By Lemma 3.2, we have

(st)l/2α = fl+1(N)α,

t(st)l/2−1sα = ωfl−1(N)α.

From (5), we know that in fact fl+1(N) = Nfl(N) + ωfl−1(N) = ωfl−1(N), so it
follows that (st)l/2α = (ts)l/2α. Similar reasoning using the polynomials {f ′

k(x)},
and in particular the fact that f ′

l (N) = 0, shows that (ts)l/2β = (st)l/2β as well.

Since (st)l/2 and (ts)l/2 agree on a basis of V , we conclude that (st)l/2 = (ts)l/2,
or

sts · · ·
︸ ︷︷ ︸

l factors

= tst · · ·
︸ ︷︷ ︸

l factors

.

A similar argument can be carried out if l is odd. ¤

The following result gives an explicit description of Ns,t.

Proposition 3.9. Suppose that K contains the square roots of ωξ. If l is the order
of the braid relation of s and t, then Ns,t is of the form

(7) z(ζ + ζ−1) − ω − ξ,

where z is a certain square root of ωξ, and ζ is a primitive lth root of unity.
Moreover, if we have either a = b or l 6≡ 2 (mod 4), then it can be assumed that
z = −ηm(a+b)/2ab.

In particular, Ns,t is always an algebraic integer.

Proof. For now, let us fix z = −ηm(a+b)/2ab. Note that this gives z = −ω if a = b.
From Lemma 3.4, we know that fl(N) = 0, so by Corollary 3.6, N must be of the
form z(ζ + ζ−1)− ω− ξ with ζ an lth root of unity. To make a stronger statement
about ζ, we consider the various cases separately. Suppose that ζ is a primitive kth
root of unity, where k | l.

If l ≡ 0 (mod 4) and k < l, and if in addition k is even, it follows from Corol-
lary 3.6 that fk(N) = 0, in contradiction with Proposition 3.8. If k is odd, the facts
that k | l and 4 | l imply that 2k | l. Since ζ2k = 1, we have f2k(N) = 0, and since
2k < l, we again have a contradiction.

If a = b and k < l, then again we find that fk(N) = 0 (this time without regard
to the parity of k), and again Proposition 3.8 gives a contradiction.

Finally, if a 6= b and l ≡ 2 (mod 4), and if k < l/2, then 2k < l, and once
again, we have f2k(N) = 0, giving a contradiction. Since k | l, the only remaining
possibilities are k = l or k = l/2. If k = l/2, note that −ζ is a primitive lth root
of unity. In this one case, we can repair the situation by replacing both z and ζ by
their negatives. ¤

The fact that Ns,t is always an integer has strong implications:

Proposition 3.10. Under a suitable identification V ' K2, the W -invariant form
on V arises from a Hermitian matrix B, and W is identified with a subgroup of
U2(ZK , B).

Proof. We retain the notation of Section 3. With respect to the basis {α, β} for V ,
s and t act by the matrices

S =

(
ω −(α∨, β)
0 1

)

and T =

(
ω 0

−(β∨, α) 1

)

.
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Now, if we replace α by a scalar multiple of itself, then we would change both
(α∨, β) and (β∨, α), but not Ns,t. Indeed, (α∨, β) and (β∨, α) can be made to
equal any two elements of K whatsoever whose product is N .

In particular, by choosing a suitable scalar multiple, we may assume that (α∨, β)
is an algebraic integer that dividesN . Then (β∨, α) = N/(α∨, β) is also an algebraic
integer, and the matrices S and T above have entries not just in K, but in ZK .

The W -invariant form arises from the Hermitian matrix

B =

(
(α, α) (α, β)
(β, α) (α, α)

)

.

Thus, we have identified W with a subgroup of U2(ZK , B). ¤

Combining this result with Lemma 2.3 and Proposition 2.5, we obtain the fol-
lowing criterion for admissibility as an immediate corollary:

Proposition 3.11. Let ω = ηm/a and ξ = ηm/b.

(1) A triple (a, b, l) is admissible if and only if, for some square root z of ωξ
and some primitive lth root of unity ζ, we have

(8) 0 <
ζ + ζ−1 − y − y−1

z + z−1 − y − y−1
< 1

under every imbedding of K into C. (Here y = ω/z = z/ξ.)
(2) Suppose that either a = b or l 6= 2 (mod 4), and let z = −ηm(a+b)/2ab.

Then (a, b, l) is admissible if and only if, for some primitive lth root of
unity ζ, the inequalities (8) hold under every imbedding K ↪→ C.

In practice, for explicit calculations, it is more convenient to have the preceding
proposition expressed in terms of conjugates of complex numbers rather than in
terms of field imbeddings into C. We therefore restate it for use in Sections 5 and 6
as follows:

Corollary 3.12. (1) A triple (a, b, l) is admissible if and only if there is a
square root z of eπi(a+b)/ab and a primitive lth root of unity ζ such that
either

(9) (z+z−1)σ < (ζ+ζ−1)σ < (y+y−1)σ or (y+y−1)σ < (ζ+ζ−1)σ < (z+z−1)σ

for every automorphism σ ∈ Gal(Q(z, y, ζ)/Q). (Here y = e2πi/a/z =
z/e2πi/b.

(2) Suppose that either a = b or l 6= 2 (mod 4), and let z = −eπi(a+b)/ab. Then
(a, b, l) is admissible if and only if, for some primitive lth root of unity ζ,
the inequalities (9) hold for every σ ∈ Gal(Q(z, y, ζ)/Q).

The preceding criteria impose no restrictions whatsoever on which primitive
lth root of unity ζ may be, but it turns out that in many cases we can make a
particularly simple choice:

Definition 3.13. An admissible triple is said to be preferred if, in the situation of
Proposition 3.11, the inequalities (8) are satisfied with ζ = ηm/l, or, equivalently,
if the inequalities (9) of Corollary 3.12 are satisfied with ζ = e2πi/l.

As we will see below, preferred triples play a special role in the classification.
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Theorem 3.14. The admissible triples fall into three infinite families

(a, b, 2) (2, 2, l) (2, b, 4)
a, b ≥ 2 l ≥ 3 b ≥ 3

and the following seventeen exceptional cases:

(3, 3, 3) (3, 3, 4) (3, 3, 5) (2, 3, 6) (2, 3, 8) (2, 3, 10)
(4, 4, 3) (3, 4, 4) (5, 5, 5)∗ (2, 4, 6) (3, 4, 8)∗ (2, 5, 10)∗

(5, 5, 3) (3, 5, 4) (2, 5, 6) (3, 5, 10)∗

(3, 5, 6)∗

Those triples marked with an asterisk are not preferred.

Proof. Direct calculations (which we omit) of the inequalities in Corollary 3.12 can
be used to demonstrate the admissibility of each of these triples. Theorem 5.8, to
be established in Section 5, asserts that there are no other admissible triples of the
form (a, a, l), while Theorem 6.17, which we prove in Section 6, states that there
are no other admissible triples of the form (a, b, l) with a 6= b. ¤

Finally, we briefly discuss the relationship between admissible triples and the
classification of complex reflection groups. Let {s, t} and {u, v} be two pairs of
elementary K-reflections. If both pairs give rise to the same admissible triple, then
the group generated by s and t must be isomorphic to that generated by u and v,
since Proposition 3.10 gives explicit realizations of both as matrix groups. But if
they give rise to distinct triples, do they necessarily generate distinct groups?

Proposition 3.15. Let s and t be a pair of elementary reflections generating a
finite group. For each generator ηi of µK , let (ai, bi, li) be the admissible triple
associated to si and ti, regarded as elementary reflections with respect to ηi. The
set of admissible triples {(ai, bi, li) | i relatively prime to m} contains a unique
preferred triple.

If u and v are another pair of elementary reflections, then they generate a group
isomorphic to that generated by s and t if and only if the unique preferred triple
among the admissible triples associated to the various ui and vi coincides with the
unique preferred triple associated to the si and ti. In other words, isomorphism
classes of complex reflection groups generated by two reflections are in one-to-one
correspondence with preferred admissible triples.

This proposition is somewhat mysterious: no conceptual reason for the special
role of preferred admissible triples is known, but if such a reason exists, it is likely
related to the following observation (here ζn denotes a primitive nth root of unity):

Proposition 3.16. Let (a, b, l) be an admissible triple. It is preferred if and only
if the minimal polynomial for ζl + ζl

−1 over Q remains irreducible over Q(ζa, ζb).

We omit the proofs of both of these propositions, as the only ones known to
the authors are easy and not at all elucidating: for Proposition 3.15, one simply
compares Theorem 3.14 with the classification of complex reflection groups, and
does a handful of computations for the five nonpreferred triples (for instance, see
Example 3.17 below), while Proposition 3.16 is a simple matter of examining the
appropriate minimal polynomial in each case.

Example 3.17. Consider the nonpreferred admissible triple (5, 5, 5). For simplicity,
let us assume that we are working in a field K with η of order 10 (the smallest
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possible order in a field containing fifth roots of unity), so ω = ξ = η2. Also, let
ζ = η4, z = −η2 = η7, and y = −1. It is easy to check the inequalities (8) directly,
so there exist reflections s and t of some K-vector space, with roots α and β, that
generate a finite group, and such that

Ns,t = (1 − η2)2
(α, β)(β, α)

(α, α)(β, β)
= −η2(η4 + η−4) − η2 − η2.

Now, let η′ = η3: this is another generator of µK . With respect to η′, s and t
are not elementary reflections, so to study the group they generate, we must first
replace them by s′ = s3 and t′ = t3. Then,

Ns′,t′ = (1 − η′
2
)2

(α, β)(β, α)

(α, α)(β, β)
=

(1 − η′
2
)2

(1 − η2)2
Ns,t

= −
(

1 − η6

1 − η2

)2

η2(η4 + η−4 + 2)

= −(1 + η2 + η4)2η2(η4 + η−4 + 2)

= −(7 + 7η2 + 7η4 + 8η6 + 7η8) = −η6 = −η′2.
What admissible triple do s′ and t′ give rise to? To find out, we must write Ns′,t′

in the form of (7), with respect to ω′ = ξ′ = η′
2

and z = −η′2. Setting

Ns′,t′ = −η′2 = −η′2(ζ ′ + ζ ′−1) − η′
2 − η′

2
,

we find that ζ ′ + ζ ′−1 = −1. The only roots of unity with this property are the
primitive cube roots. So s′ and t′ satisfy a braid relation of length 3, and give rise
to the admissible triple (5, 5, 3).

In particular, we see that the triples (5, 5, 5) and (5, 5, 3) arise from the same
complex reflection group. In fact, they are the only triples arising from that group,
and of them, only (5, 5, 3) is preferred.

Remark 3.18. Hughes and Morris originally defined admissible triples somewhat
differently [6]. Their definition was purely in terms of the roots of the Hughes-
Morris polynomials. Specifically, (a, b, l) was said to be admissible if

(10) 0 <
r

(1 − ω)(1 − ξ)
< 1 for every root r of fl(x).

They obtain a classification of admissible triples by studying the roots of these
polynomials directly. A comparison with Theorem 3.14 above reveals that a triple is
admissible in the sense of Hughes-Morris if and only if it is preferred and admissible
in the sense of this paper.

In [6, Theorem 3.16], Hughes and Morris prove a statement that is equivalent
to our Lemma 3.4. They then observe that 0 < (1 − ω)−1(1 − ξ)−1N < 1, so the
inequalities in (10) hold for a certain root of fl(x). Immediately following that,
they erroneously infer that those inequalities must hold for every root of fl(x), so
that reflections generating a finite group necessarily give rise to a triple that is
admissible in their sense.

This is not true. The point is that the triples which we have called “admis-
sible but not preferred” do indeed arise from pairs of elementary reflections—
Proposition 3.10 tells us how to construct them—but it turns out that in each
such case, a different choice of generating reflections results in a preferred admissi-
ble triple.
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4. Representing J-groups by Reflections

In this section, we return to considering the J-groups introduced in Section 1.
We will construct an action of any J-group on some 2-dimensional vector space over
a suitable abelian number field. We will also construct a nondegenerate Hermitian
form on this vector space that is invariant under the action of the group.

Lemma 4.1. (1) The element stu is in the center of J( a b c ).
(2) The generators of J( a b c ) satisfy the following relations:

(st)c = (ts)c, (tu)a = (ut)a, (us)b = (su)b.

(3) We have J( a b c )/J( a b c

a′ b′
) ' Z/a′Z × Z/b′Z.

(4) J( 1 b c

b′ c′
) ' Z/(b/b′)Z × Z/(c/c′)Z.

Proof. (1) It is easy to see that stu commutes with s:

(stu)s = s(tus) = s(stu).

Similar calculations show that stu commutes with t and u as well.
(2) Let z = stu. We have st = zu−1, so (st)c = zc. Next, since usts = zs = sz,

we see that ts = (s−1u−1s)z, so (ts)c = zc as well. The other relations follow by
symmetry.

(3) Starting from the presentation (1), we obtain a presentation of the quotient

J( a b c )/J( a b c

a′ b′
) by adding the relations sa′

= tb
′

= u = 1. Eliminating u from
the presentation, we find that

J( a b c )/J( a b c

a′ b′
) = 〈s, t | sa′

= tb
′

= 1, st = ts〉.
This is evidently a presentation for Z/a′Z × Z/b′Z.

(4) This is clear from the presentation (1). ¤

Let K be a finite abelian extension of Q that contains the roots of unity of orders
2a, 2b, and 2c, and let ZK be the ring of algebraic integers in K. As usual, we fix
a generator η of µK , whose order is denoted m. Let

θ = ηm/2a, φ = ηm/2b, ψ = ηm/2c.

Now, let us fix two algebraic integers q, r ∈ ZK such that

(11) qr = θφ(ψ + ψ−1) − θ2 − φ2.

Finally, we define the following matrices over ZK :

S =

(
θ2 q

1

)

, T =

(
1
r φ2

)

,

U = θφψT−1S−1 =

(
θ−1φψ −θ−1φψq

−θ−1φ−1ψr θ−1φ−1ψqr + θφ−1ψ

)

.

Proposition 4.2. There is homomorphism ρ : J( a b c ) → GL2(K) defined by
s 7→ S, t 7→ T , and u 7→ U .

Proof. We must show that S, T , and U satisfy the relations (1). It is readily checked
that

STU = TUS = UST = θφψ.

Next, since the eigenvalues of S are θ2 and 1, it clearly has order a; similarly, T
has order b. As for U , by using the relation (11), we find that its trace is ψ2 + 1
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and its determinant is ψ2, so its eigenvalues are ψ2 and 1. Thus, U has order c, as
desired. ¤

Now, consider the Hermitian matrix

B =

(

1 − q
1−θ2

− q̄
1−θ−2

q̄(1−φ2)
r(1−θ−2)

)

.

Proposition 4.3. The Hermitian form on K2 defined by B is nondegenerate and
ρ-invariant.

Proof. It is trivial to verify that S∗BS = T ∗BT = B, where ∗ denotes the (Her-
mitian) adjoint of a matrix. Since

U∗ = θ−1φ−1ψ−1(S−1)∗(T−1)∗,

it follows that U∗BU = B as well. Since the image of ρ is generated by S, T , and
U , the form B is ρ-invariant.

Next, we prove nondegeneracy. Let α = (1, 0) and β = (0, 1), and consider the
quantity

P =
〈α, β〉〈β, α〉
〈α, α〉〈β, β〉 =

qq̄r(1 − θ−2)

(1 − θ2)(1 − θ−2)q̄(1 − φ2)

=
qr

(1 − θ2)(1 − φ2)
=
θφ(ψ + ψ−1) − θ2 − φ2

1 + θ2φ2 − θ2 − φ2
.

Since detB = 〈α, α〉〈β, β〉−〈α, β〉〈β, α〉, we see that detB = 0 if and only if P = 1.
We must therefore show that P cannot be 1.

Now, from the above calculation, we have that P = 1 if and only if

ψ + ψ−1 = θφ+ θ−1φ−1.

Since ψ and θφ are both roots of unity, this equality implies that either θφ = ψ or
θφ = ψ−1. Let us consider the latter possibility first: in this case we have

θφψ = ηm(1/2a+1/2b+1/2c) = 1,

from which it follows that
1

2a
+

1

2b
+

1

2c
∈ Z.

But on the other hand, since we have assumed that a, b, c ≥ 2, we know that
1/2a+ 1/2b+ 1/2c ≤ 3/4, so it cannot be that θφ = ψ−1.

Finally, if θφ = ψ, then the same reasoning as above shows that

1

2a
+

1

2b
− 1

2c
∈ Z.

But now, the assumption that a ≤ b ≤ c implies that 1/2a ≤ 1/2a+ 1/2b− 1/2c ≤
1/2a + 1/2b ≤ 1/2, where the last inequality comes, as before, from the fact that
a, b ≥ 2. So the equation θφ = ψ cannot hold either.

We conclude that P cannot be 1, and that B is nondegenerate. ¤

Proposition 4.4. The group ρ(J) is finite if and only if (a, b, 2c) is a preferred
admissible triple.
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Proof. By Proposition 2.5, ρ(J) is finite if and only if the Hermitian matrix B
defined above is definite. Let α, β, and P be as in the proof of Proposition 4.3.
According to Lemma 2.3, B is definite if and only if 0 < P < 1 under every
imbedding K ↪→ C. From the expression

P =
ψ + ψ−1 − θφ−1 − θ−1φ

θφ+ θ−1φ−1 − θφ−1 − θ−1φ
,

we see that the condition 0 < P < 1 is equivalent to the inequalities (8), with the
following identifications:

ω = θ2, ξ = φ2, z = θφ, y = θφ−1, ζ = ψ.

Since we have explicitly specified ζ = ψ = ηm/2c, we deduce from Proposition 3.11
and Definition 3.13 that 0 < P < 1 holds for every imbedding K ↪→ C if and only
if (a, b, 2c) is a preferred admissible triple. ¤

Theorem 4.5. The group J( a b c

a′ b′ c′
) is finite if and only if the triple (a, b, c) has the

form (2, 2, c) or is one of (2, 3, 3), (2, 3, 4), or (2, 3, 5). These groups are all distinct
rank-two complex reflection groups, and all rank-two complex reflection groups arise
in this way.

Proof. From Proposition 4.4 and the list of admissible triples in Theorem 3.14, we
see immediately that any J-group not listed above is infinite. On the other hand,
for each of J( 2 2 c ), J( 2 3 3 ), J( 2 3 4 ), and J( 2 3 5 ), the presentation given in (1)
coincides with the presentation given in [4] for some complex reflection group, as
listed in Table 1. Thus, these groups are all complex reflection groups.

Once we have identified a given J( a b c ) as a complex reflection group, it is evi-
dent that its subgroups J( a b c

a′ b′ c′
) are complex reflection groups as well. Straight-

forward calculations with the presentations given in [4], as done in [7], allow one
to identify each of these groups with a particular group in the Shephard-Todd no-
tation: the results are recorded in Table 1. Finally, we see from the table that the
various finite J-groups are all distinct. ¤

5. Classification: Generators of Equal Order

This section is devoted to the classification of admissible triples (a, b, l) with
a = b: the main result is Theorem 5.8, which asserts that there are no admissible
triples of the form (a, a, l) other than those named in Theorem 3.14. This case
is a good deal simpler than the case in which a 6= b, since, in the notation of
Corollary 3.12, we always have y = −1. As a preliminary development, we will
study pairs of roots of unity rather than triples.

Definition 5.1. An (unordered) pair of distinct positive integers {a, b} is called
reversible if, for any primitive ath root of unity ζa and primitive bth root of unity
ζb in C, there exist imbeddings ι1 : Q(ζa, ζb) ↪→ C and ι2 : Q(ζa, ζb) ↪→ C such that

ι1(ζa + ζa
−1) < ι1(ζb + ζb

−1) and ι2(ζa + ζa
−1) > ι2(ζb + ζb

−1).

Otherwise, {a, b} is called nonreversible.

Remark 5.2. It is clear that any pair of the form {1, b} (b > 1) or {2, b} (b > 2)
is nonreversible.
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Proposition 5.3. The only nonreversible pairs {a, b}, up to exchanging a and b,
are the following:

{1, b}, {2, b}, {3, 4}, {3, 6}, {3, 10}, {4, 6}, {5, 6}, {5, 10}.

We need a few lemmas before undertaking the proof of this proposition.

Lemma 5.4. Let ζ be a primitive nth root of unity, and let p be a prime. The
polynomial xp − ζ is irreducible over Q(ζ) if p | n. If p - n, then let m be such that
pm ≡ 1 (mod n). Then xp − ζ factors as

(x− ζm)(xp−1 + ζmxp−2 + · · · + ζ(p−2)mx+ ζ(p−1)m),

and the second factor is irreducible.

Proof. Since [Q(ζpn) : Q] = φ(pn) and [Q(ζn) : Q] = φ(n), we know that [Q(ζpn) :
Q(ζn)] = φ(pn)/φ(n). (Here φ denotes Euler’s totient function.) From the well-
known formula for φ, it is clear that

φ(pn)/φ(n) =

{

p if p | n,

p− 1 if p - n.

Now, if p | n, we see that Q(ζn)[x]/(xp − ζ) = Q(ζpn). Since the degree of xp − ζ
coincides with [Q(ζpn) : Q(ζn)], it is in fact the minimal polynomial for each of its
roots, and in particular, it is irreducible over Q(ζn). A parallel argument shows
that if p - n and pm ≡ 1 (mod n), then

xp−1 + ζmxp−2 + · · · + ζ(p−2)mx+ ζ(p−1)m

is irreducible. ¤

The most important consequence of the preceding lemma is that it will let us
conjugate certain roots of unity while holding others fixed.

Corollary 5.5. Let ζ be a primitive nth root of unity, and let p be a prime. Let
ξ be a primitive pth root of unity, and let ω be a pth root of ζ such that Q(ζ, ω)
contains all pth roots of ζ. There exist automorphisms of Q(ζ, ω) which fix Q(ζ)
and carry ω to each of

ωξ, ωξ2, . . . , ωξp−1

if p | n, or to (p− 2) of the above values if p - n.

Corollary 5.6. Let ζ be a primitive nth root of unity, and let ω be a primitive
pnth root of unity, where p is a prime. Assume that with respect to some imbedding
ι : Q(ζ) → C, we have ζ = e2πit, with t ∈ [0, π]. If 1 − 2t ≥ 2/p (resp. 2t ≥ 2/p),
then ι can be extended to an imbedding ι : Q(ζ, ω) → C such that

ω + ω−1 < ζ + ζ−1 (resp. ζ + ζ−1 < ω + ω−1).

More precisely, there are at least b(1 − 2t)p − 1c (resp. b2tp − 1c) possible images
of ω for which the above inequality is satisfied.

If we also have that p | n, then the same result holds under the weaker assumption
that 1 − 2t ≥ 1/p (resp. 2t ≥ 1/p), and in general, there are at least b(1 − 2t)pc
(resp. b2tpc) possible images of ω.
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Lemma 5.7. Among all primitive nth roots of unity ζ in C, the minimum possible
value of ζ + ζ−1 is achieved when ζ = e2πic/n, where c is chosen according to
the table below. In addition, there are very few (nonprimitive) nth roots of unity
ζ ′ = e2πid/n for which ζ ′ + ζ ′−1 attains a smaller value. These are described in the
last column.

n mod 4 c d [order of e2πid/n]
0 n−2

2
n
2 [2]

1, 3 n−1
2 none

2 n−4
2

n±2
2 [n

2 ], n
2 [2]

Proof of Proposition 5.3. We divide the proof into two major portions: in the first,
we seek nonreversible pairs {a, b} in which one of a or b divides the other, and in
the second, pairs in which neither a nor b divides the other. We begin with the
former, and we assume without loss of generality that b divides a.

Case 1: b | a. A large family of clearly nonreversible pairs in this category are
those of the form {a, 1}. We henceforth assume that b > 1 (and thus a > 2 as well).
There is some k such that ζk

a = ζb, where k is not relatively prime to a. (Note
that we are not supposing that a = kb.) It is easy to find an imbedding in which
ζa + ζa

−1 > ζb + ζb
−1: we simply take ζa = e2πi/a.

We now seek an imbedding in which ζa + ζa
−1 < ζb + ζb

−1. Choose ζa as
described in Lemma 5.7 to minimize the value of ζa + ζa

−1. If it is now true that
ζa +ζa

−1 < ζb +ζb
−1, then we are done. Otherwise, according to that same lemma,

there are very few possibilities for ζb (since ζb is also an ath root of unity). Indeed,
there are none if a is odd; i.e., {a, b} is reversible whenever a is odd and b divides
it. We now consider what can happen when a is even.

If a ≡ 0 (mod 4), and yet ζa + ζa
−1 > ζb + ζb

−1, then the only possible value of
b according to Lemma 5.7 is 2. Thus, in this case, {a, 2} is nonreversible, but {a, b}
is reversible if b is any divisor of a larger than 2.

The case a ≡ 2 (mod 4) is the most difficult. Again, {a, 2} is nonreversible, and
{a, b} is reversible if b 6= 2, a/2. We need to consider the case b = a/2 more carefully.
Recall that ζb = ζk

a , for some k ∈ {1, 2, . . . , a−1}. Since we are really only interested
in conjugates of ζb + ζb

−1, we may replace ζb by its inverse if necessary and make
the stronger assumption that k ∈ {1, 2, . . . , a/2}. If ζa + ζa

−1 > ζb + ζb
−1, then ζb

must be either e2πi(a−2)/2a or e2πi(a+2)/2a. Treating these cases simultaneously, we
deduce:

a− 4

2
· k ≡ a± 2

2
(mod a)

4k ≡ ±2 (mod a)

2(2k ∓ 1) ≡ 0 (mod a).

That is, 2(2k ∓ 1) is a multiple of a, so the assumption that 1 ≤ k ≤ a/2 implies,
in fact, that 2(2k ∓ 1) = a. Now, recall that k and a are not relatively prime. Any
common factor of a and k must also divide a − 4k = ∓2, so k is even. This fact
eliminates one of the two possibilities expressed by 2(2k∓1) = a: if a ≡ 2 (mod 8),
we conclude that k = (a− 2)/4 (and 2(2k + 1) = a), whereas if a ≡ 6 (mod 8), we
have k = (a + 2)/4 (and 2(2k − 1) = a). Before considering these cases further,
let us fix an imbedding in which ζa = e2πi(a−8)/2a. (One must verify that this is
indeed a primitive ath root of unity, i.e., that (a− 8)/2 is indeed invertible modulo
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a. To this end, the following table gives explicit inverses.)

a mod 16 2 6 10 14
((a− 8)/2)−1 mod a −(3a+ 2)/8 −(a+ 2)/8 (a− 2)/8 (3a− 2)/8

If a ≡ 2 (mod 8), then we have

a− 8

2
· a− 2

4
≡ a2 − 10a+ 16

8
≡ a

a− 10

8
+ 2 ≡ 2 (mod a),

and therefore ζb = (e2πi(a−8)/2)(a−2)/4 = e2πi·2/a. Provided that a ≥ 18, it is clear
that 2 < (a− 8)/2 < a/2, and therefore

e
2πi(a−8)

2a + e−
2πi(a−8)

2a < e
2πi·2

a + e−
2πi·2

a ,

so {a, b} is reversible. However, if a = 10, we have k = 2 and b = 5. (We need
not consider the case a = 2, as that was dealt with at the beginning of the proof.)
Direct calculation of all possible conjugates of ζ10 and ζ2

10 shows that {10, 5} is
indeed nonreversible.

If a ≡ 6 (mod 8), a similar calculation to the above shows that ζb = e2πi·(−2)/a.
This time, the inequalities show that {a, b} is reversible if a ≥ 14. If a = 6, however,
we find that k = 2 and b = 3. The pair {6, 3} is clearly not reversible.

Case 2: a - b and b - a. In this case, there exists a prime p and a number i > 0
such that pi | b, but pi+1 - b and pi - a. Similarly, there is a prime q 6= p and a
number j > 0 such that qj | a, qj+1 - a, and qj - b. We assume without loss of
generality that p > q. In particular, this means that p > 2.

Our strategy will be to use Corollary 5.6 repeatedly to identify reversible pairs.
In particular, we try to find numbers t1, t2 ∈ [0, 1/2] such that e2πit1 and e2πit2 are
both primitive bth roots of unity, 1 − 2t1 ≥ 2/3, and 2t2 ≥ 2/3. Since p > 2, we
know that 2/3 ≥ 2/p, so if we find such t1 and t2 for a given b, two applications of
Corollary 5.6 demonstrate that {a, b} is a reversible pair for any a that is neither a
divisor nor a multiple of b.

The choice of t1 is easy: we take t1 = 1/b. Then 1 − 2t1 ≥ 2/3 as long as b ≥ 6.
The table below shows the value we choose for t2, depending on the residue class
of b modulo 8. In order to verify that e2πit2 is indeed a primitive bth root of unity,
we need to check that t2 is of the form c/b, where c is invertible modulo b. The
third column of the table gives an explicit inverse for c.

(12)

t2 = c/b c−1 mod b 2t2 ≥ 2/3
b ≡ 0 (mod 4) (b− 2)/2b −(b+ 2)/2 b ≥ 8
b ≡ 2 (mod 8) (b− 4)/2b −(b+ 2)/4 b ≥ 18
b ≡ 6 (mod 8) (b− 4)/2b −(3b+ 2)/4 b ≥ 14
b ≡ 1 (mod 2) (b− 1)/2b −2 b ≥ 3

The values of b not accounted for by the above table are:

1 − 2t1 < 2/3 : b = 2, 3, 4, 5

2t2 < 2/3 : b = 2, 4, 6, 10.

We will now consider each of these values of b individually to determine the nonre-
versible pairs.

It has already been remarked that {a, 2} is nonreversible for any a.
If b = 3, then 1− 2t1 = 1/3 > 2/7, so it follows that {a, 3} is reversible provided

that p ≥ 7. Now, p = 3 is not permitted, since a is assumed not to be a multiple of
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b. Suppose p = 5, so that a is a multiple of 5. Using table (12), we can express ζa

as some e2πis with 2s ≥ 2/3 as long as a ≥ 15. In these cases, it is easy to see that
e2πis + e−2πis < ζ3 + ζ3

−1. Thus, {a, 3} if a is a multiple of 5 that is at least 15. It
remains to consider a = 5 and a = 10. By explicit consideration of the conjugates
of e2πi/5 and e2πi/10, one finds that {5, 3} is reversible, but {10, 3} is not.

If b = 4, then 1 − 2t1 = 2t2 = 1/2 > 2/5, so {a, 4} is reversible as long as
p ≥ 5. We consider the case p = 3, so that a is a multiple of 3. Proceeding as
above, we find that if a ≥ 9, table (12) gives a way to choose ζa = e2πis so that
e2πis +e−2πis < ζ4+ζ4

−1. It also clear that for all a ≥ 9, we can choose ζa = e2πi/a,
in which case ζa + ζa

−1 > ζ4 + ζ4
−1. On the other hand, if a = 3 or 6, the there is

only one possible value for ζa + ζa
−1. The pairs {3, 4} and {6, 4} are not reversible.

If b = 5, then q = 5, so p ≥ 7. Although 1 − 2t1 6≥ 2/3, we do have 1 − 2t1 =
3/5 > 2/7, so all pairs {a, 5} are reversible.

If b = 6, then 2t2 = 1/3 > 2/7, so {a, 6} is reversible if either p = 3 and i > 1, or
p ≥ 7. It remains to consider the case where p = 3 with i = 1, and the case p = 5.
But in fact, p = 3 with i = 1 cannot occur, since 3 | 6. Finally, if p = 5, we proceed
as we did in studying the case b = 3. Table (12) shows that {a, b} is reversible if
a is a multiple of 5 and a ≥ 15. Explicit calculation then shows that {5, 6} is not
reversible, but {10, 6} is.

The last case to consider is that of b = 10. Here, we have 2t2 = 3/5 > 2/5, so we
have that {a, 10} is reversible if p ≥ 5. Now, suppose that p = 3, so a is a multiple of
3. Since 1− 2t1 > 2/3, it suffices to find a ζa such that ζa + ζa

−1 > e3πi/5 + e−3πi/5

to prove that {a, 10} is reversible. This is possible if a ≥ 6, simply by taking
ζa = e2πi/a. As for a = 3, we have already noted that {3, 10} is not reversible. ¤

Theorem 5.8. Suppose that (a, a, l) is an admissible triple. Then, either it is of
the form (2, 2, l), or it is one of (3, 3, 3), (4, 4, 3), (5, 5, 3), (3, 3, 4), (3, 3, 5), or
(5, 5, 5).

Proof. In the notation of Section 3, we have z = −ω and y = −1. Choose an
imbedding K ↪→ C such that ω = e2πi/a. Let us consider the inequality (9), which
becomes

−2 < ζ + ζ−1 < −e2πi/a − e−2πi/a.

We further break down the argument according to the residue class of a modulo
4. If a ≡ 0 (mod 4), then −e2πi/a is also a primitive ath root of unity. Since
ζ is a primitive lth root of unity, the above inequalities can be preserved by all
automorphisms of K only if {l, a} is a nonreversible pair. In view of the fact that
l ≥ 3 and a ≡ 0 (mod 4), Proposition 5.3 tells us that the only possibilities are
{3, 4} and {4, 6}, but if l = 6 and a = 4, then the above inequalities are not satisfied
to begin with. This leaves (4, 4, 3) as the only possibility.

If a ≡ 2 (mod 4), then −e2πi/a is a primitive (a/2)th root of unity. According
to Proposition 5.3, the only nonreversible pairs {l, a/2} with l ≥ 3 and a/2 odd
are {l, 1}, {4, 3}, {6, 3}, {10, 3}, {6, 5}, and {10, 5}. However, for each of the pairs
other than {l, 1}, explicit calculation shows that the above inequalities are violated.
The only admissible triples with a ≡ 2 (mod 4) are therefore of the form (2, 2, l).

Finally, if a is odd, then −e2πi/a is a primitive (2a)th root of unity. We examine
Proposition 5.3 once again for the nonreversible pairs {l, 2a} with l ≥ 3, 2a ≡ 2
(mod 4), and 2a ≥ 6 (since a ≥ 3). We find that the possibilities are {3, 6}, {3, 10},
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{4, 6}, {5, 6}, and {5, 10}. These correspond to the admissible triples (3, 3, 3),
(5, 5, 3), (3, 3, 4), (3, 3, 5), and (5, 5, 5). ¤

6. Classification: Generators of Unequal Order

In this section, we conclude the classification of admissible triples by showing
that the only admissible triples (a, b, l) with a 6= b are those named in Theorem 3.14.
An important tool in this part of the classification is the following technique for
obtaining new admissible triples out of old ones by examining certain subgroups of
the given complex reflection group.

Definition 6.1. Let (a, b, l) be an admissible triple arising from elementary reflec-
tion s and t (of orders a and b, respectively) of some K-vector space. Let a′ ≥ 2

be a divisor of a, and b′ ≥ 2 a divisor of b. Then the transformations s′ = sa/a′

and t′ = tb/b′ are again elementary reflections (of orders a′ and b′, respectively)
generating a finite group. These reflections give rise to a new admissible triple,
either (a′, b′, l′) or (b′, a′, l′). An admissible triple obtained in this way is said to be
subordinate to (a, b, l).

Remark 6.2. There is no way in general to compute l′ from the triple (a, b, l), but
there is one bit of information we can obtain: if a 6= b (so that l is even), then l′

is also even. This follows from the observation that α and β are not in the same
W -orbit (since a 6= b) and therefore not in the same W ′-orbit.

Typically, the concept of subordinate triples is used to rule out certain triples, as
follows: if we have proved that there are no admissible triples of the form (a′, b′, ·)
or (b′, a′, ·), where a′ | a and b′ | b, then it follows that there are no admissible
triples of the form (a, b, ·) either.

Throughout this section, we will use the following notation: with respect to
an appropriate imbedding, ω = e2πi/a and ξ = e2πi/b. Recall that according to
Proposition 3.9, we can in most cases take
(13)

z = −ηm(a+b)/2ab = ηm(ab+a+b)/2ab and y = −ηm(b−a)/2ab = ηm(ab+b−a)/2ab.

Although we will ultimately see that z and y can be defined in this way always, we
must for the time being allow the negatives of these formulas when l ≡ 2 (mod 4).
We intend to determine the possible lth roots of unity ζ such that (9) holds. Those
inequalities remain unchanged if we replace ζ by ζ−1, so, whenever z and y are
given by (13) (resp. the negatives of those formulas), we assume that ζ also lies in
the lower (resp. upper) half plane. In particular, we can write ζ in the form −e2πis

(resp. e2πis) such that s ∈ [0, 1/2] and

(14) (b− a)/2ab < s < (b+ a)/2ab.

These inequalities hold regardless of whether z and y are given by the formulas (13)
or by their negatives. Moreover, since ζ is a primitive lth root of unity, with l even,
it follows that e2πis is an lth root of unity, although possibly not primitive in the
case that ζ = −e2πis. So s can always be written as a fraction of the form k/l.

Corollary 6.3. If (a, b, l) is an admissible triple with l even, then the greatest
common divisor of a and b can be at most 3.
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Proof. Let c be the greatest common divisor of a and b, and assume that c ≥ 2.
Then there is an admissible triple of the form (c, c, l′) that is subordinate to (a, b, l).
By Remark 6.2, we know that l′ must also be even. Thus, (c, c, l′) must either equal
(3, 3, 4) or be of the form (2, 2, l′). ¤

Lemma 6.4. Let (a, b, l) be an admissible triple, and let c and d denote the orders
of z and y, respectively, as roots of unity. Then l is strictly less than the larger of
c or d. If l ≡ 0 (mod 4), then l is also strictly less than the larger of the orders of
−z and −y.
Proof. If this were not the case, we could violate (9) by conjugating ζ to e2πi/l,
resulting in both z + z−1 < ζ + ζ−1 and y + y−1 < ζ + ζ−1. ¤

Lemma 6.5. Let (a, b, l) be an admissible triple with l even. Suppose that there is
a prime p such that for some i > 0, pi divides the orders of z and y, but pi+1 does
not, and in addition, pi - l. Then, if p ≥ 5, we have l < 4 + 12/(p − 3). If i > 1
and p ≥ 3, we obtain the stronger bound l < 4 + 4/(p− 1).

Proof. Let n be the least common multiple of l and the orders of z and y, and let
ω be a primitive nth root of unity. Since pi is the largest power of p dividing the
orders of z, y, and ω, it is easy to see that z and y can be written as powers of
ω with exponents relatively prime to p. It follows that the automorphisms taking
ω to each of the values in Corollary 5.5 also take z and y to distinct values. Of
course, these automorphisms fix ζ, since pi - l.

By Corollary 5.6, each of z and y has at least b(1−2/l)p−1c conjugates satisfying
z + z−1 < ζ + ζ−1 and y + y−1 < ζ + ζ−1 respectively. Conversely, they each have
at most d2p/le conjugates satisfying the opposite inequality.

Now, let s be as in (14). We claim that

(15) b(1 − 2s)p− 1c ≤ d2spe.
If this inequality did not hold, it would mean that z had more conjugates satisfying
z + z−1 < ζ + ζ−1 than y had satisfying y + y−1 > ζ + ζ−1, so among all those
conjugates for which z+z−1 < ζ+ζ−1, at least one must have had a corresponding
value of y for which y + y−1 < ζ + ζ−1 as well. By Corollary 3.12, this contradicts
the admissibility of (a, b, l).

From (15), we calculate:

b(1 − 2s)p− 1c = p− 1 − d2spe ≤ d2spe
(p− 1)/2 ≤ d2spe

If p = 2, this inequality just says 1/2 ≤ d2spe, but this conveys no information,
since we know that d2spe is a positive integer in any case. If p is odd, however, we
get

(p− 1)/2 − 1 < 2sp(16)

and therefore, if p ≥ 5, we conclude that

s−1 < 4p/(p− 3) = 4 + 12/(p− 3).

Now, in case i > 1, Corollary 5.6 tells us that we can replace (15) by the stronger
inequality

b(1 − 2s)pc ≤ d2spe.
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Calculating as above, we find that in place of (16), we have (p− 1)/2 < 2sp, from
which it follows (this time for any odd p) that s−1 < 4 + 4/(p − 1). Finally, let
us choose an imbedding K ↪→ C such that ζ = e2πi/l, so s−1 = l. The lemma
follows. ¤

The preceding lemma will be one of our most powerful tools for showing that
certain triples are not admissible. However, it relies on rather loose estimates
in (15). The following result is stronger but much more cumbersome to apply, so
we will only use it when the preceding lemma does not suffice.

Corollary 6.6. Let (a, b, l) be an admissible triple, and let k be such that ζ =
−e2πik/l if (13) holds, or such that ζ = e2πik/l otherwise. Suppose that there is a
prime p such that for some i > 0, pi divides the orders of z and y, but pi+1 does
not, and in addition, pi - l. Then, both of the following hold:

bp(1 − k/l − (b+ a)/2ab)c ≤ dp(k/l + (b− a)/2ab)e,(17)

dp(1 − k/l − (b+ a)/2ab)e ≥ bp(k/l + (b− a)/2ab)c.(18)

If i > 1, then we have the following stronger result:

dp(1 − k/l − (b+ a)/2ab)e = dp(k/l + (b− a)/2ab)e.(19)

Proof. Corollary 5.5 tells us that z has p− 1 or p conjugates of the form

(20) e2πi( b+a
2ab

+ n
p )

under automorphisms of K that fix Q(ζ). Let us assume that 0 ≤ n ≤ p − 1. It
is easy to verify that the conjugate z′ of z corresponding to n satisfies z′ + z′−1 >
ζ + ζ−1 if and only if

0 ≤ n < d1 − k/l − (b+ a)/2abe.
Thus, z has at most d1 − k/l − (b+ a)/2abe (and at least b1 − k/l − (b+ a)/2abc)
conjugates z′ satisfying z′ + z′−1 > ζ + ζ−1. A similar calculation for y shows that
it has at least bp(k/l + (b − a)/2ab)c conjugates y′ satisfying y′ + y′−1 < ζ + ζ−1,
and at most dp(k/l+ (b− a)/2ab)e. The two inequalities in the statement are then
obtained by the same reasoning that gave (15): neither z nor y is permitted to have
more conjugates satisfying the appropriate inequality than the other.

If we have the added assumption that i > 1, then all elements of the form (20)
are conjugates of z (and similarly for y). It follows that z (resp. y) has exactly
d1 − k/l − (b + a)/2abe (resp. dp(k/l + (b − a)/2ab)e) conjugates satisfying the
appropriate inequality. The equality in the statement of the corollary follows. ¤

Lemma 6.7. Let (a, b, l) be an admissible triple, and suppose that there is a prime
number r and some k > 0 such that rk | l but rk does not divide the orders of z
or y. Then r < 2ab/(ab − a − b). If k > 1, this inequality can be strengthened to
r < ab/(ab− a− b).

Proof. Assume first that (13) holds, so that we have z−1 = −e−2πi·(a+b)/2ab =
e2πi·(ab−a−b)/2ab. As an immediate consequence of Corollary 5.6, if we have 2(ab−
a − b)/2ab ≥ 2/r, then ζ can be replaced by a conjugate ζ ′ over Q(z, y) such that
ζ ′ + ζ ′−1 < z + z−1 < y + y−1. So it must be that 1 − 2(a + b)/2ab < 2/r,
i.e., r < 2ab/(ab − a − b). The stronger inequality for the case k > 1 is obtained
analagously from the stronger inequality in Corollary 5.6.
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If instead the negatives of the formulas in (13) hold, then z = e2πi·(a+b)/2ab.
We again apply Corollary 5.6 to deduce that 1 − 2(a + b)/2ab < 2/r, whence
r < 2ab/(ab− a− b), and we do likewise for the case k > 1. ¤

Finally, there are a handful of triples that are inadmissible but cannot be shown
to be such by any of the preceding tools. We must resort to calculating explicit
conjugates using Corollary 5.5

Lemma 6.8. The triples (2, 6, 10), (3, 4, 16), and (3, 10, 20) are inadmissible.

Proof. Let us write either ζ = −e2πis or ζ = e2πis, according to whether (13) or its
negatives hold. By inspection, one finds that for each of the above triples, there are
at most two possible values of s satisfying (14). These are shown in the table below.
For each triple, we note the order of the group of roots of unity in K = Q(z, y, ζ),
and we describe a certain automorphism σ : K → K by giving its action on µK .

Triple a+b
2ab

b−a
2ab s |µK | σ|µK

(2, 6, 10) 1/3 1/6 2/10 30 x 7→ x7

(3, 4, 16) 7/24 1/24 1/16, 3/16 48 x 7→ x25

(3, 10, 20) 13/60 7/60 3/20 60 x 7→ x7

It is straightforward to check that in each case, the inequalities (9) are not satisfied
for the given automorphism σ. ¤

Proposition 6.9. If (a, b, l) is an admissible triple with a < b, l 6= 2a, and l ≤ 10,
then it must be one of (3, 4, 4), (3, 5, 4), (2, 3, 6), (2, 4, 6), (2, 5, 6), (2, 3, 8), (3, 4, 8),
(2, 3, 10), (2, 5, 10), or (3, 5, 10).

Proof. We consider each value of l ∈ {4, 6, 8, 10} separately. First, suppose l = 4,
so ζ + ζ−1 = 0. We do not consider a = 2. If a = 3, and if b ≥ 6, then it is readily
verified from (13) that z + z−1 and y + y−1 are both negative, so (9) cannot hold
if l = 4. The same reasoning applies whenever b > a ≥ 4. The only remaining
possibilities are (3, 4, 4) and (3, 5, 4).

Now, if l > 4, let us write s = k/l, where s is as in (14). For each value of l
under consideration, there are very few values of k with 0 ≤ k ≤ l/2 such that one
of ±e2πik/l is a primitive lth root of unity.

Now, (14) implies lb − la < 2kab < lb + la. Since lb + la < 2lb, we deduce that
2kab < 2lb. We also obtain −la < (2ka− l)b < la, so (since l 6= 2a) we have

(21) a < l/k and b < la/|2ka− l|.
These inequalities are the starting point for the case-by-case considerations below.
In most cases, z and y have the same order, which will be denoted c.

For l = 6, we must consider k = 1 and k = 2. If k = 1, we must consider
a = 2, 4, 5. If a = 2, we see from (21) that b < 6, and each of (2, 3, 6), (2, 4, 6), and
(2, 5, 6) is admissible. If a = 4, then b < 12. For each of the seven possible values
of b, we find that 4 | c, and we get a contradiction by applying Corollary 6.6 with
p = 2. If a = 5, then b < 15/2. Each of b = 6 and b = 7 is ruled out, again using
Corollary 6.6, with p = 5. Finally, if k = 2, then from (21), we have a < 3, i.e.,
a = 2, and thence b < 6. All the possible triples that this encompasses are, in fact,
admissible.

For l = 8, we may have either k = 1 or k = 3. If k = 1, we must consider
a = 2, 3, 5, 6, 7. For a = 2, we have b < 4, giving the admissible triple (2, 3, 8). If
a = 3, then b < 12, but among these, b = 7, 8, 9, 11 are eliminated by Lemma 6.5
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(with pi = 7, 16, 9, 11 respectively). Furthermore, b = 6 and b = 10 are eliminated
by Lemma 6.7 with rk = 8, while b = 5 is eliminated by Corollary 6.6: taking pi = 5
leads to a violation of (17). This leaves only b = 4, and (3, 4, 8) is admissible. Next,
if a = 5, then b < 20. Each of the cases b = 7, 9, 11, 13, 14, 17, 18, 19 is eliminated
by Lemma 6.5 applied with pi = 7, 9, 11, 13, 7, 17, 9, 19 respectively. Furthermore,
the cases b = 6, 10, 15 are eliminated by Lemma 6.7 with rk = 8. For b = 8, 12, 16,
we must apply Corollary 6.6 with p = 5: each of these leads to a violation of (17).
If a = 6, then b < 12. We rule out b = 7, 9, 11 by Lemma 6.5 with pi = 7, 9, 11, and
b = 10 by Lemma 6.7 with rk = 8. For b = 8, we use Corollary 6.6 with p = 3, and
obtain a contradiction of (17). Finally, if a = 7, then b < 28/3. For b = 8, 9, we
have 7 | c, so Lemma 6.5 disallows l = 8.

For l = 8 and k = 3, we see that (21) implies a = 2, and b = 3. The triple
(2, 3, 8) is admissible.

For l = 10 and k = 1, we must consider a = 2, 3, 4, 6, 7, 8, 9. For a = 2, we
get b < 10/3, giving the admissible triple (2, 3, 10). If a = 3, we have b < 15/2.
Each of the cases b = 4, 6, 7 is eliminated by Lemma 6.7 with rk = 5. This leaves
the admissible triple (3, 5, 10). If a = 4, we have b < 20. Again, every b that is
not divisible by 5 is ruled out by Lemma 6.7 with rk = 5, while b = 5, 10, 15 are
forbidden by Lemma 6.5 with pi = 8. If a = 6, then b < 30. Once more, Lemma 6.7,
applied with rk = 5, eliminates all b not divisible by 5, while for b = 15, 20, 25 we get
a contradiction by applying Lemma 6.5 with pi = 4, 8, 4 respectively. This leaves
just b = 10, which is ruled out by applying Corollary 6.6 with p = 3, since (17)
does not hold. Next, if a = 7, then b < 35/2, and in every case, 7 | c, so Lemma 6.5
forbids l = 10. If a = 8, then b < 40/3, but each of b = 9, 11, 12, 13 is ruled out
by Lemma 6.7 (with rk = 5), while b = 10 is ruled out because it does not even
satisfy (14). Finally, if a = 9, then b < 45/4, so b = 10 or 11, but again, (14) is not
satisfied.

If l = 10 and k = 3, we need only look at a = 2 and a = 3, for which we have the
bounds b < 10 and b < 15/4. In the latter case, there are no permitted values for
b. In the former case, the possibilities b = 4, 5, 7, 8, 9 are disallowed by Lemma 6.5
with pi = 8, 5, 7, 16, 9 respectively. This leaves only b = 3 and b = 6. The latter is
ruled out by Lemma 6.8, while the former gives the admissible triple (2, 3, 10). ¤

Proposition 6.10. Let (a, b, l) be an admissible triple. Suppose that b is a prime
power, that b is relatively prime to a, and that b - l. Then (a, b, l) is one of (2, b, 4),
(3, 5, 4), (2, 5, 6), (3, 5, 6), (2, 3, 8), or (2, 3, 10).

Proof. By (13), the orders of z and y are either both ab or both 2ab. In any case,
z and y have the same order. Suppose that b = qj , where q is a prime. Now,
each triple named in the statement of the proposition is either one that was already
identified as admissible in Proposition 6.9, or one satisfying 2a = l ≤ 10. The
following argument is broken into cases according the values of q and j, and in each
case, we first show that l ≤ 10, and second, we show that for each permitted l, the
only admissible triples of the form (l/2, qj , l) are those named above.

If q ≥ 11, or if q ≥ 3 and j > 1, then Lemma 6.5 implies that l = 4. Every triple
(2, b, 4) is admissible. We next consider each of q = 3, 5, 7 with j = 1. If q = 7, then
l < 7 by Lemma 6.5. The triple (2, 7, 4) is admissible, but (3, 7, 6) is inadmissible
by Corollary 6.6 applied with p = 7, since (17) is violated. Next, if q = 5, then
l < 10 by Lemma 6.5. (2, 5, 4) and (3, 5, 6) are admissible, but (4, 5, 8) is not, as is
seen by applying Corollary 6.6 with p = 5 (again, (17) is violated). If q = 3, then
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a must be 2, so l < 2ab = 12 by Lemma 6.4. Since a = 2, the only triple requiring
special consideration is (2, 3, 4), which is admissible.

If q = 2, we apply Corollary 5.5 directly, rather than using Lemma 6.5. Note
that p 6= 2, so a > 2. First suppose that j ≥ 3, so that b ≥ 8. It is readily seen
from (13) that z + z−1 and y + y−1 are both negative (or both positive, if the
negatives of (13) hold). In either case, conjugating them simultaneously according
to Corollary 5.5, we replace both z and y by their negatives. After this conjugation,
z+ z−1 and y+ y−1 both have the sign opposite to that of ζ+ ζ−1, so (9) is clearly
violated. So there are no admissible triples with q = 2 and j ≥ 3.

Next, if q = 2, j = 2, so that b = 4, then we must consider a = 2, 3. For a = 2,
after computing the orders of z and y from (13), we get l < 8 by Lemma 6.4, and
of course, (2, 4, 4) is admissible. For a = 3, that lemma gives l < 24. We have
assumed that b - l, but l = 14, 18, 22 are forbidden according to Lemma 6.7 applied
with rk = 7, 9, 11 respectively. So l ≤ 10 in this case. We need to check (3, 4, 6):
it is inadmissible by Corollary 6.6 with pi = 8, since (19) does not hold. The only
remaining case, that of q = 2, j = 1, cannot occur, since b > a ≥ 2. ¤

Lemma 6.11. Suppose that (2, 2j , l) is an admissible triple, where j > 1. Then, it
is either of the form (2, 2j , 4), or it is (2, 4, 6).

Proof. Every triple (2, 2j , 4) is admissible, so we assume henceforth that l > 4.
From (13), z and y both have order 2j+1, so l < 2j+1 by Lemma 6.4. If 2j - l, then
l < 8 by Lemma 6.5, so we examine Proposition 6.9 and find that the only triple of
this form is (2, 4, 6). On the other hand, if 2j | l, it follows that l = 2j . Therefore,

we can write ζ = e2πik/2j

where k is odd. From (14), we deduce that

(b− a)/2ab = (2j−1 − 1)/2j+1 < k/2j < (2j−1 + 1)/2j+1 = (b+ a)/2ab.

These inequalities imply that 2k = 2j−1, but this contradicts the fact that k is
odd unless j = 2. This gives l = 4, but we had assumed l > 4, so we have a
contradiction. ¤

Lemma 6.12. The only admissible triples of the form (3, 2j , l) where 2j | l are
(3, 4, 4) and (3, 4, 8).

Proof. For any admissible triple (3, 2j , l) with j ≥ 3, there is a subordinate triple
(3, 8, l′). By Proposition 6.10, there are no admissible triples of this form with 8 - l′,
so 8 | l′. Both z and y have order 48, so if 16 - l′, then Lemma 6.5 would imply
that l′ < 8, a contradiction. Therefore, 16 | l′. By Lemma 6.4, l < 48, so we must
consider l = 16 and l = 32. But these are forbidden by Lemma 6.7 applied with
rk = 16 and rk = 32 respectively. Thus, there are no admissible triples (3, 8, l′),
and hence no admissible triples (3, 2j , l) with j ≥ 3 and 2j | l.

If j = 2, then l, assumed to be a multiple of 4, satisfies l < 24 by Lemma 6.4.
By Lemma 6.7, if 8 - l, then l < 8. The only possibility satisfying this condition
is l = 4, and indeed, (3, 4, 4) is admissible. On the other hand, if 8 | l, the choices
are l = 8 and l = 16. The latter case is ruled out by Lemma 6.8, while the former
gives the admissible triple (3, 4, 8). ¤

Lemma 6.13. There are no admissible triples of the form (3, 3j , l) with j > 1.

Proof. Any such triple would have a subordinate triple of the form (3, 9, l′), so it
suffices to prove that there are no admissible triples of this latter form. If (3, 9, l′)
were an admissible triple, then z and y would either both have order 9, or both
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have order 18, depending on whether (13) or its negatives held. In either case,
l′ < 18 by Lemma 6.4. Moreover, 9 divides the orders of both z and y, so if 9 - l′,
then Lemma 6.5 gives that l′ < 6, and therefore l′ = 4, but (3, 9, 4) is inadmissible
by Proposition 6.9. On the other hand, 9 | l′ is also impossible, since no even
numbers smaller than 18 satisfy that. Thus, there is no admissible triple of the
form (3, 9, l′). ¤

Lemma 6.14. Let (a, b, l) be an admissible triple with a ∈ {2, 3, 4}, and with b odd
and relatively prime to a. If b | l, then (a, b, l) is one of (2, 4, 4), (2, 3, 6), (2, 5, 10),
or (3, 5, 10).

Proof. We first give an outline argument for showing that most triples of the form
described above are inadmissible. Later, we will consider each of the cases a = 2, 3, 4
individually, filling in various details in the outline argument. This outline depends
on the fact that l | 6ab, a fact that will later be established separately for each
value of a.

Since a and b are relatively prime, we know that z and y must both have order
either ab or 2ab. Since l | 6ab, ζ can be expressed as e2πik/6ab. Now, from (14), we
obtain

(22) 3b− 3a < k < 3b+ 3a.

Now, consider an automorphism σ of K such that σ(ζ) = e2πi/l = e2πim/6ab. In
order to respect (9), we must have either σ(z + z−1) > σ(ζ + ζ−1) or σ(y+ y−1) >
σ(ζ + ζ−1). Assume the former holds. This means that σ(z) = e2πid/6ab with
1 ≤ |d| ≤ m (d may be positive or negative). Let us choose some small integers r
and s such that

rd = sm, so σ(z)r = σ(ζ)s.

If, instead, we have σ(y + y−1) > σ(ζ + ζ−1), then a relation of the form σ(y)r =
σ(ζ)s is obtained. Applying σ−1, we obtain either zr = ζs or yr = ζs. Now, if we
in fact have zr = ζs, then we obtain

r(3b+ 3a) ≡ sk (mod 6ab).

That is, there is an integer n such that sk = r(3b + 3a) + 6abn. Combining this
fact with (22), we deduce that

s(b− a) < r(b+ a) + 2abn < s(b+ a),

or

(23) (s− r)/2a− r/2b− s/2b < n < (s− r)/2a− r/2b+ s/2b.

If we had instead had yr = ζs, an analogous derivation would yield

(24) (s− r)/2a+ r/2b− s/2b < n < (s− r)/2a+ r/2b+ s/2b.

We will find that for each a and for most values of b, there are no integers satisfy-
ing (23) or (24), as appropriate. It follows that for that particular a and b, no triple
(a, b, l) with b | l is admissible. We now begin the case-by-case considerations.

For a = 2, z and y have order 2ab = 4b. Since l < 4b and l is even, we have
l = 2b and m = 6. In the notation of the outline argument, we have d = ±3, so we
obtain r = ±2 and s = 1. If r = 2, no integers satisfy (23), while (24) is satisfied
by no integers if b ≥ 7. Similarly, if r = −2, (23) has no solutions if b ≥ 7, but (24)
has no solutions at all. Thus, the only triples of the desired form must have b = 3
or b = 5, and indeed, (2, 3, 6) and (2, 5, 10) are both admissible.
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For a = 3, z and y have order ab = 3b. Since l is even, it must equal 2b. It
follows that m = 9 and d = ±6. This means that r = ±2 and s = 2. If r = 2, no
integers satisfy either (23) or (24). If r = −2, no integers satisfy (23) if b ≥ 7, and
none satisfy (24) at all. From b = 5 we obtain the admissible triple (3, 5, 10). (We
do not consider b = 3, as b is assumed to be relatively prime to a.)

Finally, for a = 4, z and y have order 2ab = 8b. Thus, l may be 2b, 4b, or 6b.
This means that d = 3, and m may be 12, 6, or 4. In these cases, the pair (r, s) may
be one of (±4, 1), (±2, 1), or (±4, 3) respectively. A laborious but straightforward
serious of calculations shows that no integers satisfy either (23) or (24) in any of
these cases. ¤

Lemma 6.15. There are no admissible triples (a, b, l) for which (a, b) is one of
(3, 6), (3, 10), (3, 15), (4, 6), or (5, 6).

Proof. Suppose (a, b, l) is an admissible triple, with (a, b) one of the pairs named
above. For none of these pairs is there a triple (a, b, l) with l < 12, according to
Proposition 6.9, so l ≥ 12. We now treat each of the four pairs individually.

(3, 6): z has order 4 and y has order 12, so l < 12 by Lemma 6.4. This is a
contradiction.

(3, 10): z and y both have order 60, so l < 60. Now, 4 and 5 both divide the
orders of z and y, but if either 4 - l or 5 - l, then Lemma 6.5 would imply that l < 8
or l < 10 respectively, so in fact 20 | l. Now, l 6= 40 because by Lemma 6.7, we
know that 8 - l. Finally, the triple (3, 4, 20) is inadmissible by Lemma 6.8.

(3, 15): z and y have orders 10 and 30, respectively, if (13) holds, and orders 5
and 15, if the negatives of those formulas hold. In any case, we have l < 30 and 5 | l
(applying Lemma 6.5 as above). Since l is even, this means l = 20, but Lemma 6.7
implies that 4 - l.

(4, 6): z and y both have order 24. Since 8 divides the orders of z and y, we
argue as above with Lemma 6.5 to conclude that 8 | l. Since 12 ≤ l < 24, this
means l = 16, yet 16 - l by Lemma 6.7.

(5, 6): z and y both have order 60. Just as in the case of (a, b) = (3, 10), we find
that 20 | l, and that l 6= 40 by Lemma 6.7. To rule out l = 20, we use Corollary 6.6
with p = 3, as (17) is violated. ¤

Proposition 6.16. Let (a, b, l) be an admissible triple, in which a and b are distinct
prime powers, say a = pi and b = qj. Then (a, b, l) is either of the form (2, qj , 4),
or it is one of (3, 4, 4), (3, 5, 4), (2, 3, 6), (2, 4, 6), (2, 5, 6), (3, 5, 6), (2, 3, 8), (3, 4, 8),
(2, 3, 10), (2, 5, 10), or (3, 5, 10).

Proof. We first treat the case in which p = q. By Corollary 6.3, we must have p = 2
or p = 3 and i = 1. All triples of the form (2, 2j , l) or (3, 3j , l) were identified in
Lemmas 6.11 and 6.13, respectively.

Henceforth, we suppose p 6= q. By Lemma 6.4, we know that l < 2ab. Those
triples in which b - l were identified in Proposition 6.10, so we now assume that
b | l. We consider the cases a - l and ab = l. If a - l, then if p ≥ 5, or if p = 3 and
i > 1, then Lemma 6.5 says that l < 10, but according to Proposition 6.9, there are
no admissible triples with l < 10 and a ≥ 5. Thus, we have either a = 3, or a = 2i.
If a = 3, then triples with q = 2 were identified in Lemma 6.12, while those with q
odd were identified in Lemma 6.14. Finally, if a = 2i, then b must be odd. If i > 1,
then (a, b, l) would have a subordinate triple of the form (4, b, l′), but according to
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Lemma 6.14, no such admissible triples exist. We conclude that i = 1, and note
that all triples with a = 2 and b odd were identified in Lemma 6.14.

On the other hand, now suppose that ab = l. Since l is even, exactly one of p
or q must be 2. If q = 2, then necessarily j > 1, since qj > a > 2. If a > 3, then
we can find a subordinate triple of the form (4, a, l′), contradicting Lemma 6.14, so
a = 3. All triples of the form (3, 2j , l) were identified in Lemma 6.12. On the other
hand, if p = 2, then again i > 1 would let us produce a subordinate triple (4, b, l′)
that is forbidden by Lemma 6.14, so i = 1 and a = 2. All triples of the form (2, b, l)
were identified in Lemma 6.14. ¤

Theorem 6.17. Let (a, b, l) be an admissible triple with a 6= b. Then, either it
is of the form (2, b, 4), or it is one of (3, 4, 4), (3, 5, 4), (2, 3, 6), (2, 4, 6), (2, 5, 6),
(3, 5, 6), (2, 3, 8), (3, 4, 8), (2, 3, 10), (2, 5, 10), or (3, 5, 10).

Proof. Given an admissible triple (a, b, l), if pi is any prime power dividing a and
qj is any prime power dividing b, then there is a subordinate triple either of the
form (pi, qj , l) or (qj , pi, l). Assume for now that a > 2. We can therefore choose pi

and qj such that neither of them is equal to 2. Examining Proposition 6.16, we find
that each of pi and qj must be one of 3, 4, or 5. That is, these are the only possible
prime powers dividing a and b, so a and b must both be divisors of 3 · 4 · 5 = 60.

The factors of 60 larger than 2 are {3, 4, 5, 6, 10, 12, 15, 20, 30, 60}. Among the
45 possible pairs (a, b) with a < b that might be formed out of these numbers, an
immense number can be ruled out for the following reasons:

• The greatest common divisor of a and b must be 1, 2, or 3, by Corollary 6.3.
This eliminates the 24 pairs (4, 12), (4, 20), (4, 60), (5, 10), (5, 15), (5, 20),
(5, 30), (5, 60), (6, 12), (6, 30), (6, 60), (10, 15), (10, 20), (10, 30), (10, 60),
(12, 20), (12, 30), (12, 60), (15, 20), (15, 30), (15, 60), (20, 30), (20, 60), and
(30, 60).

• There cannot be a subordinate triple of the form (4, 5, l′), by Lemma 6.14.
This eliminates the 7 pairs (4, 5), (4, 10), (4, 15), (4, 30), (5, 12), (10, 12),
and (12, 15).

• There cannot be a subordinate triple of the form (3, 6, l), (3, 10, l), (3, 15, l),
(4, 6, l), or (5, 6, l), by Lemma 6.15. This eliminates the 12 pairs (3, 6),
(3, 10), (3, 12), (3, 15), (3, 20), (3, 30), (3, 60), (4, 6), (5, 6), and (6, 15).

Indeed, the only possibilities remaining are (3, 4) and (3, 5). All admissible triples
for which (a, b) is one of these pairs were identified in Proposition 6.16.

Lastly, we consider the case a = 2. All admissible triples (2, b, l) with b ∈ {3, 4, 5}
were identified in Proposition 6.16. We now simply need to show that if b ≥ 6, then
l = 4. For now, we must consider both (13) and its negatives, although afterwards,
since we will have proved that l ≡ 0 (mod 4), we will be able to choose z and y
such that (13) holds.

For future reference, we record the orders of z and y in the following table.

orders
z = y = z = y =

−e2πi(2+b)/4b −e2πi(b−2)/4b e2πi(2+b)/4b e2πi(b−2)/4b

b ≡ 1 (mod 2) 4b 4b 4b 4b
b ≡ 0 (mod 4) 2b 2b 2b 2b
b ≡ 2 (mod 8) b 1

2b
1
2b b

b ≡ 6 (mod 8) 1
2b b b 1

2b
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Note, in particular, that the orders of z and y always divide 4b. Also, observe that
by Proposition 6.9, there are no triples (2, b, l) with b ≥ 6 and 6 ≤ l ≤ 10. We must
therefore show that l ≥ 12 is also forbidden.

We first show that if rk | l but rk - b, where r is a prime number, then r = 2. If
r is odd, it follows from the above table that rk does not divide the orders of z or
y, so by Lemma 6.7, r < 4b/(2b−2− b) = 4b/(b−2). If b ≥ 10, then this inequality
implies r = 3, but for b = 6, both r = 3 and r = 5 are permitted. Write ζ = e2πit

with (b− 2)/4b < t < (b+ 2)/4b. Now, according to Corollary 5.5, if r = 3, then ζ
is conjugate to at least one of e2πi(t+1/3) and e2πi(t−1/3). Using the fact that b ≥ 6,
it is easily verified that

e2πi(t+1/3) + e−2πi(t+1/3) < e2πi(b+2)/4b + e−2πi(b+2)/4b

< e2πi(b−2)/4b + e−2πi(b−2)/4b < e2πi(t−1/3) + e−2πi(t−1/3),

so at least one conjugate of ζ yields a violation of 9. Similarly, if r = 5, ζ is
conjugate to one of e2πi(t±2/5), and the same reasoning applies. Therefore, r = 2.

Hence, l can be expressed as 2md, where d | b. We may suppose that d is in
fact the greatest common factor of l and b; i.e., b/d is odd. Assume for now that
b/d > 1, and let q be the largest prime divisor of b/d. If q ≥ 5, then Lemma 6.5
implies that l < 10, so we are finished. If q = 3, and if 32 | b, that same lemma
again implies l = 4. If q = 3 and 32 - b, then we have that b = 3d. Since
l < 4b = 12d, we see that l ∈ {d, 2d, 4d, 8d}. In particular, l is not divisible by b. In
all cases, we have that l | 8b, so t can be written as a fraction j/8b. Recalling that
(b− 2)/4b < t < (b+ 2)/4b, we have 2b− 3 ≤ j ≤ 2b+ 3. If j = 2b, then clearly ζ
is of order 4. It is readily verified that in each of the remaining cases j = 2b ± 1,
j = 2b± 2, or j = 2b± 3, one always has that the order of ζ is always divisible by
b, contradicting the fact that b - l. Thus, the assumption that b/d > 1 always leads
to a contradiction.

Finally, we consider the case b/d = 1, so that l = 2mb. By Lemma 6.4, and
the above table showing orders of z and y, we see that b 6≡ 2 (mod 4). Indeed,
further examination of that table shows that if b is odd, then l = 2b, while if b ≡ 0
(mod 4), we have l = b. From Lemma 6.14, we know that there are no admissible
triples (2, b, 2b) with b odd and b ≥ 6. On the other hand, if b ≡ 0 (mod 4), then
t ∈ ((b − 2)/4b), (b + 2)/4b) should be a multiple of 1/b, but the only multiple of
1/b in that interval is 1/4. We thus conclude that there are no admissible triples
(2, b, l) with b ≥ 6 and l 6= 4. ¤

With this result, we have also completed the proof of Theorem 3.14.

7. Application: Nebe root systems

The first definition of root system for complex reflection groups was given by
Cohen [5]. In that paper, Cohen gave a new, self-contained classification of the
complex reflection groups. (The Shephard-Todd classification relied on disparate
earlier results going back to the late nineteenth century on “collineation groups gen-
erated by homologies.”) He used root systems as a tool for studying the exceptional
groups in dimension greater than 2.

However, Cohen’s root systems seem not to lend themselves to axiomatic study as
objects in their own right, primarily because there is no analogue of the requirement
for ordinary root systems that the inner product of any coroot with any root be an
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integer. (Thus, even Weyl groups can have infinitely many inequivalent root systems
in Cohen’s definition.) Recently, Nebe [8]has proposed an intriguing new definition
that seems much closer in spirit to the traditional definition of root systems for
Weyl groups (following, say, Bourbaki [3]). The following definition is a slightly
modified version of that appearing in [8]; the precise difference is explained below.

Definition 7.1. Let V be a finite-dimensional vector space over a finite abelian
extension K of Q. Let ZK be the ring of integers of K, and let Z∗

K be its group
of units. Also, let µK be the group of roots of unity in K, and let m be its order.
Given a set Φ ⊂ V , a function e : Φ → N, and a generator η of µK , we call the
triple (Φ, e, η) a Nebe K-root system if

(1) Φ consists of a finite number of Z∗
K-orbits, spans V , and does not contain

0. The function e is constant on Z∗
K-orbits in Φ, and e(α) ≥ 2 for all α ∈ Φ.

(2) Given a root α ∈ Φ, there exists an α∨ ∈ V ∗ such that 〈α∨, α〉 = 1−ηm/e(α).
In addition, the reflection sα defined by sα(x) = x − 〈α∨, x〉α satisfies
sα(Φ) = Φ.

(3) For any α, β ∈ Φ, we have 〈α∨, β〉 ∈ ZK .
(4) For any α ∈ Φ, we have Kα ∩ Φ = Z∗

Kα.

The subgroup of GL(V ) generated by the sα is denoted W (Φ, e). The rank of the
root system (Φ, e, η) is defined to be dimV .

Two root systems (Φ, e, η) and (Φ′, e′, η′), in V and V ′ respectively, are said to

be isomorphic if there is a linear isomorphism T : V
∼−→ V ′ such that T (Φ) = Φ′,

and for each α ∈ Φ, we have e′(Tα) = e(α) and sTα = TsαT
−1.

In Nebe’s original definition [8], in lieu of a choice of generator η of µK , one
implicitly chooses an imbedding K ↪→ C, and in the second axiom, the quantity
ηm/e(α) is replaced by e2πi/e(α). Note that two root systems (Φ, e, η) and (Φ′, e′, η′)
can be isomorphic even if η 6= η′; however, the condition sTα = TsαT

−1 is equiva-
lent to requiring that ηm/e(α) = η′m/e(α).

Given a root system in a K-vector space V , we can, by Lemma 2.4, endow V
with a W (Φ, e)-invariant definite Hermitian form, and hence a conjugate-linear iso-
morphism V ∗ ' V . It is easy to verify that this isomorphism maps each coroot α∨

to (1 − ηm/e(α))(α, α)−1α (see [8]; the argument is exactly the same as Bourbaki’s
proof of the corresponding fact for ordinary root systems [3]). In view of this, the
calculations of Section 3 can be interpreted as taking place in the context of a root
system.

Now, the first step in Bourbaki’s development of root systems is a thorough study
of the possible relationships between just two roots. He finds that the “Cartan
integer” 〈α∨, β〉〈β∨, α〉 must be one of just four possible values—0, 1, 2, or 3—
corresponding to the four rank-two root systems, of types A1 × A1, A2, B2, and
G2, respectively. The results of this section are motivated by this approach.

Lemma 7.2. Let W be a complex reflection group generated by two elementary
reflections s and t, giving rise to an admissible triple (a, b, l). If s and t are conjugate
in W , then a = b, and Ns,t ∈ Z∗

K .

Proof. Since a and b are the orders of s and t, respectively, it is obvious that
they must be equal if s and t are conjugate. Let ω = ηm/a. To prove that Ns,t

is invertible, we must rely on the fact that preferred admissible triples actually
correspond to presentations for their corresponding groups, as given in [4] or Table 1.
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Specifically, we note that if l were even, then we could define a homomorphism
f : W → µK by f(s) = ηm/a and f(t) = 1. But this shows that s and t cannot be
conjugate to one another if l is even.

Thus, l is odd. According to Proposition 3.9, we have

Ns,t = −ω(ζ + ζ−1) − ω − ω = −ω(2 + ζ + ζ−1) = −ω(1 + ζ)(1 + ζ−1),

where ζ is a primitive lth root of unity. It is an elementary fact that when l is odd,
1 + ζ (and hence its conjugate 1 + ζ−1) is invertible in ZK . Thus, Ns,t ∈ Z∗

K . ¤

Theorem 7.3. Let W be a complex reflection group generated by two reflections s
and t giving rise to an admissible triple (a, b, l). Assume, in addition, that every
reflection in W that fixes the reflecting hyperplane of s is in fact a power of s, and
likewise for t. The isomorphism classes of Nebe root systems for W are in one-to-
one correspondence with Z∗

K-orbits of divisors of Ns,t. In any such root system, if
α is any root for s, and β is any root for t, we have 〈α∨, β〉〈β∨, α〉 = Ns,t.

The assumption about the generating reflections of W is minor: if we have a
generator that does not satisfy this assumption, we can clearly always replace it
by one that does. Also, note that in view of this theorem, one can determine all
possible values of 〈α∨, β〉〈β∨, α〉 by referring to Theorem 3.14 and Proposition 3.9.

Proof. Choose a divisor q ∈ ZK of Ns,t. As we saw in the proof of Proposition 3.10,
we may choose roots α and β for s and t such that

〈α∨, β〉 = q, 〈β∨, α〉 = Ns,t/q.

Let us define Φ = Z∗
K(W · α) ∪ Z∗

K(W · β) and e : Φ → N by

e(γ) =

{

a if γ ∈ Z∗
K(W · α),

b if γ ∈ Z∗
K(W · β)

We must verify that (Φ, e, η) is indeed a root system, and we must also check that
its isomorphism class is determined by the Z∗

K-orbit of q.
To begin with, let us check that e : Φ → N is indeed well-defined. If Z∗

K(W · α)
meets Z∗

K(W · β), or, more generally, if K×(W · α) meets K×(W · β), then in
particular, there exists some z ∈ K× and w ∈ W such that wβ = zα. This means
that wtw−1 is a reflection (of order b) along the same root line as s, so by the
assumption on the generators of W , wtw−1 is a power of s, and b divides a. On the
other hand, w−1sw is a power of t, so we see that if K×(W · α) meets K×(W · β),
then a = b. (Indeed, since wtw−1 and s are both elementary reflections of the
same order along the root line, they are equal: s and t are conjugate.) Thus e is
unambiguously defined in every case.

Next, we define coroots by the conjugate-linear isomorphism V ' V ∗ men-
tioned above: for each γ ∈ Φ, we define γ∨ ∈ V ∗ to be the point identified with

(1 − ηm/e(γ))(γ, γ)−1γ ∈ V .
Recall from the proof of Proposition 3.10 that s and t, and therefore all w ∈W ,

act by matrices with ZK-coefficients with respect to the basis consisting of α and
β. It follows that Φ ⊂ ZKα + ZKβ. Since 〈α∨, α〉 and 〈α∨, β〉 are both in ZK , it
follows that α∨, δ〉 ∈ ZK for all δ ∈ Φ. Likewise, 〈β∨, δ〉 ∈ ZK for all δ ∈ Φ as well.

Now, we check the axioms. Axiom (1) is obvious. For axioms (2) and (3), assume
that we are considering a root γ ∈ Z∗

K(W · α), say γ = zwα (z ∈ Z∗
K , w ∈ W ).
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(The proof is the same if γ ∈ Z∗
K(W · β) instead.) Therefore, e(γ) = a, and, since

W preserves the Hermitian form on V , we have

(γ, γ) = (zwα, zwα) = z̄z(α, α).

We have

sγ(x) = x− 〈γ∨, x〉γ = x− (1 − ηm/a)(γ, x)

(γ, γ)
γ

= x− (1 − ηm/a)z̄(wα, x)

z̄z(α, α)
zwα

= w

(

x− (1 − ηm/a)(α,w−1x)

(α, α)
α

)

= ws(w−1x).

Since sγ = wsw−1, it is obvious that sγ(Φ) = Φ.
Next, for any δ ∈ Φ, we have

〈γ∨, δ〉 =
(1 − ηm/a)z̄

z̄z(α, α)
(wα, δ) = z−1〈α∨, w−1δ〉.

As we remarked above, 〈α∨, w−1δ〉 ∈ ZK , and since z ∈ Z∗
K , we conclude that

〈γ∨, δ〉 ∈ ZK as well.
Finally, we must verify axiom (4). Since W preserves the Hermitian form on V ,

it is clear that Kγ ∩W · γ ⊂ µKγ ⊂ Z∗
Kγ. Then, since

Kγ ∩ Z∗

K(W · α) = Kγ ∩ Z∗

K(W · γ) = Z∗

K(Kγ ∩W · γ)
we conclude that Kγ∩Z∗

K(W ·α) = Z∗
Kγ. It remains to consider Kγ∩Z∗

K(W ·β). In
the case that K×(W ·α) and K×(W ·β) do not meet, we clearly have Kγ∩Z∗

K(W ·
β) = ∅, so Kγ ∩ Φ = Z∗

Kγ, as desired. On the other hand, suppose K×(W · α)
and K×(W · β) do intersect (and so, as discussed above, s and t are conjugate,
and a = b). Suppose, in particular, that there is some root δ ∈ Kγ ∩ Z∗

K(W · β),
where δ = cγ for some c ∈ K×. We must show that c ∈ Z∗

K . If δ = z1w1β (where
z1 ∈ Z∗

K , w1 ∈W ), then the root δ1 = z−1w−1δ = z−1z1w
−1w1β satisfies δ1 = cα.

Now,

〈δ∨1 , β〉 =
(1 − ηm/a)(cα, β)

(cα, cα)
= c−1〈α∨, β〉,

and similarly, 〈β∨, δ1〉 = c〈β∨, α〉. We know from Lemma 7.2 that Ns,t, and hence
both 〈α∨, β〉 and 〈β∨, α〉, are in Z∗

K . Therefore, the quantities

c =
〈β∨, δ1〉
〈β∨, α〉 and c−1 =

〈δ∨1 , β〉
〈α∨, β〉

are both in ZK , so c ∈ Z∗
K , as desired. ¤

8. Collineation groups and Shephard-Todd Families

When Shephard and Todd first classified complex reflection groups in 1954 [9],
they treated the exceptional groups (i.e., those groups not in the infinite series
G(r, p, n), also called primitive groups) by referring to known classifications of cer-
tain finite subgroups of PGL(V ), called “collineation groups generated by homolo-
gies.” (Here, a “homology” is simply the image in PGL(V ) of a reflection of V .)
For each such group, they worked out the list of possible preimages in GL(V ) that
are generated by reflections. Their methods thus naturally give a grouping of the
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exceptional complex reflection groups into families: two groups are in the same
family if they have the same image in PGL(V ).

A cursory glance at the tables in [9] shows that these families coincide with the
grouping in Table 1 by the J-group parameters a, b, c. In fact, this phenomenon has
a uniform explanation that applies equally well to the rank-two complex reflection
groups in the infinite series.

Specifically, let us define a group

P (a b c) = J( a b c )/〈stu〉.
According to [4], the center of each finite group J( a b c ) is precisely the subgroup
generated by stu, so the image of J( a b c ) in PGL(V ) is precisely the quotient by
that subgroup.

Proposition 8.1. For any a′, b′, and c′, the natural map J( a b c

a′ b′ c′
) → P (a b c) is

surjective.

Proof. Let J = J( a b c ), J ′ = J( a b c

a′ b′ c′
), and P = P (a b c). Also, let D be the

quotient of J obtained by making sa′

, tb
′

, and uc′ central: in other words, D is
obtained by adding the following relations:

sa′

t = tsa′

, sa′

u = usa′

, tb
′

s = stb
′

, tb
′

u = utb
′

, uc′s = suc′ , uc′t = tuc′ .

Let D′ and C be the quotients of J ′ and P , respectively, obtained by adding these
same relations. Let π : J → D, j : J → P , and k : D → C be the quotient maps.

J ′ ⊂ J
j−−−−→ P

π



y



y

D′ ⊂ D
k−−−−→ C

We remark that the kernel π is precisely the normal closure of the subgroup
generated by the six elements sa′

t(tsa′

)−1, sa′

u(usa′

)−1, . . . , uc′t(tuc′)−1. In other
words, this kernel is generated by all conjugates

w · sa′

t(tsa′

)−1 · w−1, w ∈ J,

and the corresponding elements for the other five new relations. Now, each such
conjugate can be expressed as a product of commutators:

w · sa′

t(tsa′

)−1 · w−1 = wsa′

ts−a′

t−1w−1

= wsa′

w−1s−a′

sa′

wts−a′

t−1w−1 = wsa′

w−1s−a′ · sa′

(wt)s−a′

(wt)−1.

Now, it is clear that any commutator of sa′

(or tb
′

or uc′) with an arbitrary element
of J is in the kernel of π. From the above calculation, we deduce that this kernel
is in fact generated by such commutators.

Our goal is to prove that j|J ′ is surjective. We begin by observing that J ′ =
π−1(D′): since J ′ is defined as a normal closure, it is generated by the set

{wsa′

w−1 | w ∈ J} ∪ {wtb′w−1 | w ∈ J} ∪ {wuc′w−1 | w ∈ J}.
Now, D′ need not be defined as a normal closure: since sa′

, tb
′

, and uc′ are in the
center of D, the subgroup they generate is already normal. The preimage of D′ in
J , therefore, is generated by sa′

, tb
′

, uc′ , and the kernel of π. That kernel, in turn,
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is generated by commutators of those three elements with arbitrary elements of J .
Thus, π−1(D′) is generated by

{sa′

, tb
′

, uc′} ∪ {wsa′

w−1s−a′ | w ∈ J}∪
{wtb′w−1t−b′ | w ∈ J} ∪ {wuc′w−1u−c′ | w ∈ J}

It is now clear that π−1(D′) = J ′.
Next, we claim that if k|D′ is surjective, then so is j|J ′ . If k|D′ is surjective, then

every element of D differs from some element of D′ by an element of ker k. Since
this kernel is precisely the subgroup of D generated by stu, the surjectivity of k|D′

would mean that every element of D can be written in the form

(25) (sa′

)m(tb
′

)n(uc′)p(stu)q.

In turn, this means that every element of J can be written as

(sa′

)m(tb
′

)n(uc)p(stu)qx,

for some x ∈ kerπ. Now, since kerπ ⊂ J ′, and since stu is in the center of J , it
follows that every element of J can be written as y(stu)q, with y ∈ J ′, and thence
that the map j|J ′ is surjective.

Thus, it suffices to prove that k|D′ is surjective. Specifically, we must show that
in D, each of s, t, and u can be written in the form (25). Now, an examination
of Table 1 shows that in any finite J-group, at least one of the parameters a′, b′,
or c′ is 1. Suppose, without loss of generality, that a′ = 1. The fact that s can be
written in the form (25) is then self-evident. Next, using the fact that stu and s
are both central in D, it is easy to prove that

(stu)q = sqtquq

for any q. Since b′ and c′ are relatively prime, we can find integers d and e such
that

b′d+ c′e = 1.

Using the centrality of s and uc′ , we calculate:

(s1)−c′e(tb
′

)d(uc′)−e(stu)c′e = (s1)−c′e(tb
′

)d(uc′)−esc′etc
′e(uc′)e = tb

′d+c′e = t.

A similar calculation shows that (s1)−b′d(tb
′

)−d(uc′)e(stu)b′d = u. Thus, k|D′ is
surjective, and the proposition is proved. ¤

Corollary 8.2. Two finite J-groups J( a b c

a′ b′ c′
) and J( d e f

d′ e′ f′ ) are in the same
Shephard-Todd family if and only if the parameters (a, b, c) are equal (up to permu-
tation) to the parameters (d, e, f).
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[4] M. Broué, G. Malle, and R. Rouquier, Complex reflection groups, braid groups, Hecke

algebras, J. Reine Angew. Math. 500 (1998), 127–190.



ON RANK-TWO COMPLEX REFLECTION GROUPS 35

[5] A. M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (1976),
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