STAGGERED SHEAVES ON PARTIAL FLAG VARIETIES

PRAMOD N. ACHAR AND DANIEL S. SAGE

ABSTRACT. Staggered t-structures are a class of t-structures on derived categories of equivariant co-
herent sheaves. In this note, we show that the derived category of coherent sheaves on a partial flag
variety, equivariant for a Borel subgroup, admits an artinian staggered t-structure. As a consequence,
we obtain a basis for its equivariant K-theory consisting of simple staggered sheaves.

Let X be a variety over an algebraically closed field, and let G be an algebraic group acting on X
with finitely many orbits. Let Qﬁth(X ) be the category of G-equivariant coherent sheaves on X, and let
DY (X) denote its bounded derived category. Staggered sheaves, introduced in [1], are the objects in the
heart of a certain t-structure on D% (X), generalizing the perverse coherent t-structure [2]. The definition
of this t-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of a
Serre-Grothendieck dualizing complex wx € D%(X) [4]; and (3) a perversity, which is an integer-valued
function on the set of G-orbits, subject to certain constraints. When the perversity is “strictly monotone
and comonotone,” the category of staggered sheaves is particularly nice: every object has finite length,
and every simple object arises by applying an intermediate-extension (“IC”) functor to an irreducible
vector bundle on a G-orbit.

An s-structure on X is a collection of full subcategories ({€0h%(X)<n}, {€00%(X)>n})nez, satisfying
various conditions involving Hom- and Ext-groups, tensor products, and short exact sequences. The
staggered codimension of the closure of an orbit ic : C' — X, denoted scod C, is defined to be codim C'+n,
where 7 is the unique integer such that i,wx € D(C) is a shift of an object in €oh®(C)<,,NCH (C)>p.
By [1, Theorem 9.9], a sufficient condition for the existence of a strictly monotone and comonotone
perversity is that staggered codimensions of neighboring orbits differ by at least 2. The goal of this note
is to establish the existence of a well-behaved staggered category on partial flag varieties, by constructing
an s-structure and computing staggered codimensions. As a consequence, we obtain a basis for the
equivariant K-theory KZ(G/P) consisting of simple staggered sheaves.

1. A GLUING THEOREM FOR S-STRUCTURES

If X happens to be a single G-orbit, s-structures on X can be described via the equivalence between
Qth(X ) and the category of finite-dimensional representations of the isotropy group of X. In the
general case, however, specifying an s-structure on X directly can be quite arduous. The following
“gluing theorem” lets us specify an s-structure on X by specifying one on each G-orbit.

Theorem 1.1. For each orbit C C X, let Zc C Ox denote the ideal sheaf corresponding to the closed

subscheme ic : C — X. Suppose each orbit C is endowed with an s-structure, and that i-Zc|c €
Qof)G(C)S_l. There is a unique s-structure on X whose restriction to each orbit is the given s-structure.

Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that
itTc|o € €oh®(C)<_ is replaced by the following two assumptions:

(F1) For each orbit C, itZc|c € €oh®(C)<o.

(F2) Each F € €0h%(C)<,, admits an extension F; € €oh(C) whose restriction to any smaller orbit

C" c Cis in €oh%(C) <.

Condition (F1) is trivially implied by the stronger assumption that i Z¢|c € Qth(C)S_l. It suffices,
then, to show that (F2) is implied by it as well. Given F € €0h%(C)<w, let G € €oh%(C) be some
sheaf such that G|c ~ F. Let ¢/ C C \ C be a maximal orbit (with respect to the closure partial
order) such that i%,G|cr ¢ €oh®(C")<,. (If there is no such C’, then G is the desired extension of F,
and there is nothing to prove.) Let v € Z be such that if,G|c € Cof)G(C')SU. By assumption, we
have v > w. Let ¢/ = G @ IS, Since IC"X\G’ is isomorphic to the structure sheaf of X \ 6/,
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we see that §'|5 & ~ G|z & On the other hand, according to [1, Axiom (S6)] (which describes how
tensor products behave with respect to s-structures), the fact that i%Zor|or € CobG(C’)S,l implies that
i£.G o ~ i Glor @ (i Tor|c)®P ™ € Coh®(C")<y. Thus, G is a new extension of F such that the
number of orbits in C'\ C' where (F2) fails is fewer than for G. Since the total number of orbits is finite,
this construction can be repeated until an extension Fj satisfying (F2) is obtained. (]

2. TORUS ACTIONS ON AFFINE SPACES

In this section, we consider coherent sheaves on an affine space. Let T" be an algebraic torus over an
algebraically closed field k, and let A be its weight lattice. Choose a set of weights A1,..., A, € A. Let
T act linearly on A™ = Spec k[z1,. .., x,] by having it act with weight A; on the line defined by the ideal
(xj:7#1). Given u € A, let V() denote the one-dimensional T-representation of weight p. If X is an
affine space with a T-action, we denote by Ox (u) the twist of the structure sheaf of X by p.

Suppose m < n, and identify A™ with the closed subspace of A" defined by the ideal (z; : j > m).
Let 7 C Ogn denote the corresponding ideal sheaf, and let i : A”™ < A™ be the inclusion map.

Proposition 2.1. With the above notation, we have
L~ Opm (A1) D@ Opm (=) and — ©'Opn(p) = Opm (1 + A1 4 -+ - M) [m — 1.

Proof. Throughout, we will pass freely between coherent sheaves and modules, and between ideal sheaves
and ideals. In the T-action on the ring R = k[x1,...,2,], T acts on the one-dimensional space kx;
with weight —);. We have i*Z ~ Z/Z? ~ (Tmt1,...,%5)/(ziz; : m+1 < i < j < n), so if we let
S =klx1,...,Tm], we obtain *7 ~ 2, (1S D Dy, S =2 V(-Apt1) @S- DV (=\) ®S.

To calculate i'Opn (1), we may assume that m = n — 1, as the general case then follows by induction.
Recall that i,i'(-) ~ RHom(iOpn-1,-). To compute the latter functor, we employ the projective reso-
lution z, R — R for i,Ogn-1. Now, z,R ~ V(=) ® R, so when we apply Hom(-, V(u) ® R) to this
sequence, we obtain an injective map V() ® R — V(u 4+ Ay) ® R whose image is V(i + Ap) ® z,R.
The cohomology of this complex vanishes except in degree 1, where we find V(4 A,) ® R/z, R. Thus,
128" Opn (1) = RHom (i, Ogn—1,Opn (1)) ~ 1 Opn—1 (1 + A\p)[—1], as desired. O

3. $-STRUCTURES ON BRUHAT CELLS

Let G be a reductive algebraic group over an algebraically closed field, and let T' C B C P be a maximal
torus, a Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P.

Let W be the Weyl group of G (with respect to T'), and let ® be its root system. Let ®* be the set
of positive roots corresponding to B. Let Wy € W and ®; C ® be the Weyl group and root system
of L, and let ®p = &, U ®T. For each w € W, we fix once and for all a representative in G, also
denoted w. Let X denote the Bruhat cell BwP/P, let X,, denote its closure (a Schubert variety), and
let 4, : Xy — G/P be the inclusion. Note that X = X¢ if and only if wW = vWp,.

Let A denote the weight lattice of T, and let p = 1> ®*. (For a set ¥ C @, we write “Y_ U” for
> wew @) For any w € W, we define various subsets of ®* and elements of A as follows:

H(w) = ot Nw(®t)  7w(w) = T(w) Iy (w) =@ Nw(@" ~®r)  7p(w) =TI (w)

O(w) =T Nw(®) Ow)=> 6(w) Or(w) =@ Nw(® ~®z) Or(w)=>.0r(w)

For any subset ¥ C @, we define g(¥) = @, cy do- Next, let B, = wBw™!, and let U,, denote the
unipotent radical of B,,. Its Lie algebra u,, is described by u,, = g(w(®")). Let (-,-) denote the Killing
form. By rescaling if necessary, assume that (2p,\) € Z for all A € A.

Now, the category QZof)B (X2) is equivalent to the category QRep(B,, N B) of representations of the
isotropy group B, N B. We define an s-structure on X; via this equivalence as follows:
O Coh®(X2)<p ~ {V € Rep(B, N B) | (A, —2p) < n for all weights A occurring in V'}
Coh®(X2) s ~ {V € Rep(B, N B) | (A, —2p) > n for all weights A occurring in V'}

Lemma 3.1. For any v,w € W, there is a B,-equivariant isomorphism B,wP/P ~ g(v(© (v~ w))).

Proof. We have B,wP/P = w - By-1,P/P ~ w - By-1,/(By-1, N P). Since B,-1, N P contains the
maximal torus T, the quotient B,,-1,/(B,-1, N P) can be identified with a quotient of U,,-1,, and hence
of u,-1,. Specifically, it is isomorphic to g(w™tv(®T) \ ®p) ~ glwv(®+) N (@~ \ ®1)), so
B,wP/P ~w-glw (@) N (@~ \ 1)) ~ g(v(0r (v w))). O
2



In the special case v = wwy, where wy is the longest element of W, the set v(©(v~1w)) is given by
wwo(Or(wo)) =w(®7)Nw(®™ N @) =w(® @) = -1 (w) UOr(w).
Let Y, = Byw,wP/P. Applying Lemma 3.1 with v = 1 and with v = wwy, we obtain
(2) Xop~9(0r(w)) and Y, > X7 @ g(-1L(w)).

Finally, let Z,, denote the ideal sheaf on G/P corresponding to X,,. Since Y,, is open, Proposition 2.1
tells us that 7, 7| xs ~ @aem, () Oxg (). Since (a, —2p) <0 for all a € T, we see that i T |xo €
QohB(X;’))S,l, and then Theorem 1.1 gives us an s-structure on G/P. Separately, Proposition 2.1 also
tells us that il,O¢/ p[codim X,,] is in QohB(G/P)SML(w)_’Qm N CohB(G/P)ZML(w),Ql,). If w is the unique

element of maximal length in its coset w7y, then we have codim X, = |®T| — {(w) and 71, (w) = 7w(w).
(See [3, Chap. 2].) Combining these observations gives us the following theorem.

Theorem 3.2. There is a unique s-structure on G/P compatible with those on the various X9 . If w
is the unique element of mazimal length in wW7p,, then the staggered codimension of X,,, with respect to
the dualizing complex O p, is given by scod X,, = |®T| — L(w) + (m(w),2p). O

4. MAIN RESULT

Theorem 4.1. With respect to the s-structure and dualizing complex of Theorem 3.2, DB(G/P) admits
an artinian staggered t-structure. In particular, the set of simple staggered sheaves {ZC(Xy, Oxe (X))},
where X € A, and w ranges over a set of coset representatives of Wi, forms a basis for KP(G/P).

By the remarks in the introduction, this theorem follows from Proposition 4.6 below. Throughout this
section, the notation “u-v” for the product of u,v € W will be used to indicate that £(uv) = €(u) + £(v).
Note that if s is a simple reflection corresponding to a simple root «, £(sw) > ¢(w) if and only if o € II(w).

Lemma 4.2. Let s be a simple reflection, and let o be the corresponding simple root. If {(sw) > f(w),
then m(sw) = sw(w) + « and O(sw) = s6(w) + a.

Proof. Since II(s) = &1 ~\ {a}, it is easy to see that if a € II(w), then II(sw) = s(II(w) \ {a}), and
hence that 7(sw) = s(m(w) — @) = s7(w) + a. The proof of the second formula is similar. O

Lemma 4.3. For any w € W, we have (m(w),0(w)) = 0.

Proof. We proceed by induction on £(w). If w = 1, f(w) = 0, and the statement is trivial. If (w) > 1,
write w = s-v with s a simple reflection. Let o be the corresponding simple root. We have (r(w), (w)) =
(m(sv),0(sv)) = (sw(v) + a, s6(v) + ), and so

(m(w), 0(w)) = (s7(v), s0(v)) + (s7(v), @) + (s0(v), @) + (@, @) = (w(v), 0(v)) + (s(2p) + v, ).

Now, (m(v),8(v)) vanishes by assumption. Since s permutes ®* \ {a}, and 2p — « is the sum of all roots
in &1 \ {a}, we see that s(2p — a) = 2p — a. But s(2p — a) = s(2p) + « as well, so we find that

(r(w), 0(w)) = (2p — a,a) = (s(2p — @), @) = (2p — @, 50) = —(2p — @, ).
Comparing the second and last terms above, we see that all these quantities vanish, as desired. O
Proposition 4.4. If o € II(w) is a simple root, then {(a, 8(w)) < 0.

Proof. 1t is clear that it suffices to consider the case where W is irreducible. We proceed by induction
on ¢(w). When w = 1, (w) = 0, so the statement holds trivially. Now, suppose £(w) > 0, and let ¢t be a
simple reflection such that ¢(tw) < ¢(w). Let 8 be the simple root corresponding to ¢t. We must consider
four cases, depending on the form of tw.

Case 1. w=t-v with a € TI(v). Then (a, 8(tv)) = (o, t0(v) + B) = (te, O(v)) + (v, B), so {«, O(tv)) =
(a —(BY,a)B,0(0)) + (o, B) = (a,0(v)) — (BY,)(3,0(v)) + (o, 3). We know that (3¥,a) < 0 and
(o, B) < 0. The fact that ¢(tv) > £(v) implies that § € II(v), and a € II(v) by assumption, so
(a,0(v)) <0 and (5,0(v)) <0 by induction. The result follows.

In the remaining cases, we will have a ¢ TI(¢tw). This implies that s and ¢ do not commute. Let
N = {a",8){BY,a). We then have N € {1,2,3}, with N = 3 occurring only in type Gs.

Case 2. w = ts-v with 3 € II(v). We have («,0(tsv)) = (a, t0(sv) + B) = (a,ts0(v) + ta + 3) =
(sta, O(v)) + (o, ta+ B). Tt is easy to check that sta = (N —1)a— (3Y,a)8, and hence that (sta, 0(v)) =
(N —1){a,0(v)) — (BY,a)(B,6(v)). Now, 8 € II(v) by assumption, and « € II(v) since £(sv) > £(v), so
(o, 0(v)) < 0and (8,0(v)) <0 by induction. Clearly, N—1 > 0 and (8", a) < 0, so (sta,0(v)) < 0. Next,
we have ta+ 0 = a— (8", a)3+, so (o, ta+8) = {a,a) — (8", a){a, B) +{a, 3) = @(2—N+(av,ﬂ>).
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Recall that (aV, ) € {=1,—N}, so (2— N + (a",3)) is either 1 — N or 2 — 2N. In either case, we see
that (a,ta+ §) < 0. It follows that (a, 6(w)) < 0.

In the last two cases, we assume that 8 ¢ II(stw). This implies that w = tst - v for some v. We also
have sw = stst - v, so it must be that N > 2.

Case 8. w = tst-v and N = 2. In this case, sw = stst - v = tsts- v, so {(sv) > £(v), and hence
a € II(v). Calculations similar to those above yield that 0(tstv) = tstf(v) + tsf + ta + 3, and that
(a,tsfB + ta + B) = (o, B) — @(av,@ = 0. Thus, (a,0(tstv)) = {a,tstb(v)) + (o, tsf + ta + B) =
(tsta,@(v)). Direct calculation shows that tsta = « (regardless of whether « is a short root or a long
root). Since o € II(v), (e, 0(v)) < 0 by induction, so («a,0(w)) <0 as well.

Case 4. w=tst-v and N = 3. Since we have assumed that W is irreducible, W must be of type Gs.
Since sw = stst-v, we must have v € {1, s, st}, since ststst is the longest word in W. First suppose v = st.
Since sw is the longest word, we have II(w) = {a}, and hence §(w) = 2p — a, so Lemma 4.2 implies that
(a,0(w)) = 0. If v = s, direct calculation gives 0(w) = 2p — o — s, and then that («, 8(w)) = («, 5) < 0.
Finally, if v = 1, we find that (w) = 2p — a — sf — sta, and again (a, §(w)) < 0. O

Proposition 4.5. Let s be a simple reflection, corresponding to the simple root a. Let v,w be such that
l(vsw) = £(v) + 1+ £(w). Then (r(vw),2p) — (m(vsw),2p) = (1 — (¥, 0(v™1)))(w™ e, 2p) > 0.

Proof. We proceed by induction on /(v). First, suppose that v = 1. Note that #(v=) = 0. Since
2p = w(w) + 6(w), Lemma 4.3 implies that (7(w), 2p) = (r(w), 7(w)). Similarly,

(r(sw),2p) = (n(sw), 7 (sw)) = (s7(w) + a, s7(w) + &)
= (sm(w), sm(w)) + 2(sm(w), @) + {a, a) = (w(w), 7(w)) + 2(m(w), sa) + (2p, &)
= (m(w), 2p) — 2(m(w), ) + (m(w) + O(w), ) = (w(w),2p) — (w(w) — O(w),q).

It is easy to see that m(w) — 6(w) = w(2p), whence it follows that (m(w),2p) — (7(sw),2p) = (w1, 2p).
Finally, the fact that £(sw) > ¢(w) implies that w™la € T, so (w™ta,2p) > 0.

Now, suppose £(v) > 1, and write v = ¢ - x, where ¢ is a simple reflection with simple root 8. Using
the special case of the proposition that is already established, we find

(m(zsw),2p) — (w(tzsw), 2p) = (w™lsa™'B,2p)  and  (m(zw),2p) — (w(tzw),2p) = (w™'z™'5,2p).
Combining these with the fact that sz=!8 = 2718 — (a", 27 !8)a, we find

(m(taw), 20) — {x(tasw), 20) = ((r(aw), 20) — (r(wsw), 20)) + (w " se "8, 2p) — (w2 8,20))
— (1= (@, 6 ) w a,2p) — (a2~ B) (w e, 20) = (L= (@, 6(x~") + 2~ B) (", 20).

An argument similar to that of Lemma 4.2 shows that (2~ 1)+ 2718 = 0(z =) = 8(v™1), so the desired
formula is established. Since £(vs) > ¢(v), we also have £(sv™!) > ¢(v~!), and then Proposition 4.4 tells
us that (aV,0(v™1)) < 0. Thus, (r(vw),2p) — (7(vsw),2p) > 0. O

The preceding proposition is a statement about a pair of adjacent elements with respect to the Bruhat
order. It immediately implies that for any v,w € W with v < w in the Bruhat order, (6(v),2p) —
((w),2p) > 0. By Theorem 3.2, we deduce the following result, and thus establish Theorem 4.1.

Proposition 4.6. If X, C X, then scod X, —scod X, > 2. [l
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