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Abstract

LetG be a connected complex reductive Lie group. We propose a certain bijection between the set
of dominant integral weights of G, and the set of pairs consisting of a nilpotent coadjoint orbit and a
finite-dimensional irreducible representation of the isotropy group of the orbit. A constructive proof
of this bijection is given for the groups GL(n,C), and the bijection is established by direct calculation
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CHAPTER 1

Introduction

Let G be a connected complex reductive Lie group, and g its Lie algebra, with universal enveloping
algebra U(g). Let K be a compact real form of G, with Lie algebra k. Let T be a maximal (complex)
torus in G, and let Λ(G) (resp. Λ+(G)) denote the weight lattice (resp. set of dominant weights) of
T . Let N ∗ denote the nilpotent cone in g∗, and let M(G) denote the category of Harish-Chandra
modules of G. Finally, let C(G) denote the category of finitely-generated (S(gC/kC),K)-modules
supported on N ∗, where S(V ) denotes the symmetric algebra on a vector space V .

If we pick a finite-dimensional K-invariant generating subspace for a given Harish-Chandra mod-
ule in M(G), we can form its associated graded module, an (S(g),K)-module. In fact, it turns out
that this module is supported on N ∗, and that k acts on it by 0, so we actually get an object in C(G).
This operation is not functorial, since it depends on the choice of a finite-dimensional generating
subspace. Nevertheless, it gives rise to a well-defined homomorphism

[gr] : KM(G)→ KC(G)

between the Grothendieck groups of these two categories [13].
Studying KC(G) can tell us things about objects in M(G). The following theorem gives us one

description of KC(G).

Theorem 1 ([13]). Let O1, . . . ,Om be the nilpotent orbits in N ∗; let e1, . . . , em be representa-
tives thereof, and let Gei be the isotropy group for each ei. Let (τ, Vτ ) be an irreducible algebraic
representation of Gei . There is a module N(ei, τ) in C(G), whose G-module structure is given by
IndGGei τ , and which meets the following conditions.

(a) The associated variety of N(ei, τ) is Oi.

(b) The collection {N(ei, τ)}, as i ranges over all orbits and τ over all irreducible representations
of the appropriate isotropy group, constitutes a Z-basis for KC(G).

Another description of the holomorphic G-module structure of modules in C(G) is furnished by
the following theorem.

Theorem 2 ([14]). Let M be an object in C(G). For σ ∈ Λ(G), let Cσ be the one-dimensional
T -representation of weight σ. Then, in KC(G), there is a unique expression for M of the form

M =
∑

σ∈Λ+(G)

mσ(M) IndGT Cσ, (1.1)

where only finitely many of the mσ(M)’s are nonzero.

This theorem essentially says that the IndGT Cσ, as σ ranges over dominant weights, constitute a
basis for KC(G). (In Chapter 2, we will see explicitly how to produce a sum of objects of C(G) such
that their holomorphic G-module structure is given by IndGT Cσ.)

What do these two theorems have to do with each other? Theorem 1 describes a basis with
respect to which associated varieties are readily accessible—indeed, the asssociated varieties of the
basis elements are essentially given as part of the notation by which the basis elements are indexed.
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Theorem 2, on the other hand, seems to present to us, in its language of weights, something more
akin to infinitesimal characters.

Now, unitarity results for reductive Lie groups often come about from a comparison of infinites-
imal characters and associated varieties, so it would be nice to understand the relationship between
the bases arising from these two theorems. In particular, an explicit description of this relation-
ship would make feasible certain computations to establish the unitarity of various representations
introduced by Arthur, leading to the verification of the Arthur conjectures [2], [3].

The object of the present work is to study this relationship. Combining the two theorems gives
us equations of the form

N(ei, τ) =
∑

σ∈Λ+(G)

mσ(ei, τ) IndGT Cσ. (1.2)

Let us define a map between the indexing sets for the two bases:

γ : {(ei, τ)} → Λ+(G),

where ei ranges over G-conjugacy classes of nilpotent elements, and for each ei, τ ranges over
irreducible algebraic representations of Gei , is defined by

γ(ei, τ) = the largest σ such that mσ(ei, τ) 6= 0.

Of course, it is not clear that this definition even makes sense; indeed, we shall revise it in Chapter 2
before attempting to do anything rigorous with it. Nevertheless, we can say something about the
intuition by which we hope to be guided. The hope is that there is an “upper-triangular” relationship
between the two bases under consideration, and that, in particular, picking off the largest term on
the right-hand side of (1.2) actually gives a bijection.

Related bijections between Λ+(G) and {(ei, τ)} have been considered by Bezrukavnikov [4], [5]
and by Ostrik [12]. The existence of such bijections was originally conjectured by Lusztig [10].

In Chapter 2, we develop the necessary background of facts from algebraic geometry that are
needed in order to manipulate sheaves on the nilpotent cone. In the course of developing this
background, we shall see what kinds of tools and tricks are needed in trying to compute expressions
of the form (1.2). An understanding of these tools and tricks will enable us to give a precise definition
of γ in Section 2.1. By the end of the chapter, we formulate some guesses on how to pick off the
largest term of an expression of the form (1.1) for a given pair (ei, τ), and we actually compute γ in
some extreme cases.

Chapters 3–5 are all set in the restricted context of GL(n,C). In Chapter 3, we introduce a new
formalism for manipulating and studying the relationships between weights of G, representations of
isotropy groups of orbits, and the representation theory of certain Levi subgroups that serves as the
intermediary between these two. We establish the basic properties of the artifacts of this formalism,
called weight diagrams, and we introduce a number of operations that can be performed on weight
diagrams while leaving certain properties invariant.

In Chapter 4, we put the weight diagrams to work in two different algorithms. One of these,
called “α,” combines the operations on weight diagrams from Chapter 3 to transform any weight
diagram whatsoever into one that meets certain very stringent requirements. It turns out, in fact,
that those requirements are so stringent that a weight diagram meeting them can be reconstructed
from very little information. Such a reconstruction is accomplished by the second algorithm in the
chapter, called, sensibly enough, “β.”

Chapter 5 is devoted to establishing the main result of the present work:

Theorem 3. For the group G = GL(n,C), the map γ is a bijection. This map and its inverse
may be explicitly computed by algorithms.

Approximately speaking, α computes γ, and β computes its inverse.
In Chapter 6, we attempt to duplicate the work of Chapters 3–5 in the context of Sp(2n,C). We

do not yet obtain an analogue of Theorem 3, nor do we have any reason to believe that such a result
should not hold. Indeed, we introduce a weight diagram formalism appropriate to the Sp(2n,C)
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context, and we establish some of the basic properties thereof. Under some assumptions (viz. the
guesses at the end of Chapter 2, and some restrictions on what orbits we look at), we are able to
twist the algorithm for α from Chapter 4 into something that makes sense in the Sp(2n,C) context,
and we show how to use it to compute γ under certain circumstances.

Finally, the appendices show various examples worked out. Appendix A gives examples of the
two algorithms of Chapter 4, and Appendix B contains tables of explicit calculations of γ for an
assortment of groups.
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CHAPTER 2

Equivariant Coherent Sheaves on the Nilpotent Cone

In this chapter, we develop some general ideas using the algebraic geometry of the nilpotent cone.
Given an irreducible representation (τ, Vτ ) of Ge, let Vτ denote the vector bundle G ×Ge Vτ over
G/Ge ' Oe. In the first section, we investigate how to relate N(e, τ) = Γ(Oe,Vτ ) to the cohomology
of some G-equivariant coherent sheaf supported on Oe. In the second, we tackle the computation
of those cohomology groups using other techniques. We obtain formulas explicitly enough that in
the last two sections, we are able to carry out some calculations, as well as conjecture how those
calculations might work in a more general setting.

We shall have occasion to refer to the structure sheaves of various varieties, but the standard
notation for structure sheaves poses a problem, since we use the letter O for orbits. Instead, we
shall use the calligraphic letter S for structure sheaves.

For the most part, vector bundles and representations will be considered to be virtual; that is,
we work with equivalence classes in the Grothendieck group of the appropriate category, rather than
the objects themselves. As a consequence, even when we have a representation (of, say, a parabolic
subgroup) that is not completely reducible, we are at liberty to write it as a sum of irreducible
representations. Occasionally, we may without comment regard a representation of a Levi factor of
some larger group as a representation of the whole group by letting its unipotent radical act trivially.

2.1 Relating Orbits to their Closures

In this section, we carry out some calculations that more or less follow [11]. Let Pe be a parabolic
subgroup of G containing Ge, and suppose that it has Levi decomposition LeUe. Recall that Ge

also has a decomposition as a semidirect product of a reductive group and unipotent group; let Gered

denote its reductive part. Finally, suppose that ve is an Ad(Pe)-invariant subspace of g with the
properties that

Ad(G)(ve) = Oe

and

Oe ∩ ve is a single Pe-orbit.

In particular, the first of these assumptions implies that Oe ∩ ve is dense in ve. Next, let µ :
G ×Pe ve → Oe be the moment map, given by µ(g, v) = Ad(g)(v). It follow from the assumptions
that Ge ⊆ P e and that Oe ∩ ve is a single Pe-orbit that µ is birational and one-to-one over the open
orbit Oe.

(The supposition of the existence of such a ve is not vacuous. For example, given e, we can
always produce a Jacobson-Morozov sl(2)-triple {h, e, f}, and form the h-eigenspace decomposition
of g:

g =
⊕
i∈Z

gi.

Then we can take Pe to be the connected subgroup of G with Lie algebra
⊕

i≥0 gi. A result of
Kostant [9] implies that ve =

⊕
i≥2 gi has the properties listed above.)
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Our strategy is encoded in the commutative diagram below. We begin by trying to extend Vτ to a
virtual representation (η,Wη) of Pe. This gives rise to a G-equivariant vector bundleWη = G×PeWη

over G/Pe. We pull this back to a vector bundle over G ×Pe ve, and then push forward its sheaf
of sections to get a G-equivariant sheaf µ∗π∗Wη over Oe. We establish the relationship between
Γ(Oe,Vτ ) and this sheaf over the orbit closure, and then we (almost) explicitly compute the space
of global sections of the latter using Lie algebra cohomology.

π∗Wη Wηy y
µ−1(Oe)⊆G×Pe ve

π−−−−→ G/Pey yµ
Vτ −−−−→ Oe ⊆ Oe ←−−−− µ∗π

∗Wη

Lemma 2.1.1. If η|Ge ' τ , then µ∗π
∗Wη|Oe is isomorphic to the sheaf of sections of Vτ .

Proof. For any open set U ⊆ Oe, we need to check that Γ(U,Vτ ) ' Γ(U, µ∗π∗Wη). The latter space
is the same as Γ(µ−1(U), π∗Wη). Since Wη = G×Pe Wη, it is easy to check that

π∗Wη ' G×Pe (ve ×Wη).

Now, µ−1(U) is some open subset of G×Pe ve; it consists of equivalence classes of pairs (g, v) with
Ad(g)(v) ∈ U . Recall that the moment map µ is one-to-one over Oe. So for any given u ∈ U , if we
pick some g ∈ G such that Ad(g)(e) = u, then one set of representatives for the element µ−1(u) is
{(gh, e) | h ∈ Ge}. A section of π∗Wη over µ−1(U) can be thought of as a map assigning to each
(gGe, e) an equivalence class of triples {(gh, h−1e, h−1w) | h ∈ Ge)}, where w ∈ Wη. Written this
way, the middle component is superfluous. A section of π∗Wη can be interpreted as a map assigning
to each coset gGe ∈ U an equivalence class of pairs {(gh, h−1w) | h ∈ Ge}.

We have just described precisely what it means to have a section of G ×Ge Wη over U . We
conclude that if η|Ge ' τ , then Γ(U,Vτ ) ' Γ(µ−1(U), µ∗π∗Wη).

The sheaf µ∗π∗Wη will serve as an intermediary between N(e, τ) and the orbit closure Oe. We
just saw that Γ(Oe, µ∗π∗Wη) ' Γ(Oe,Vτ ); the following proposition helps us relate these spaces to
Γ(Oe, µ∗π∗Wη).

The spaces of sections we examine in this proposition, and henceforth in the chapter, are objects
in the category C(G), but we seek an expression of the form in (1.1), where the S(gC/kC)-module
structure is not shown. We therefore stick to considering these objects only as K-modules, or
equivalently as algebraic G-modules. We always have complete reducibility for such modules, and
we freely make use of this fact in what follows.

Proposition 2.1.2. Let X be a closed union of nilpotent orbits, and let Oe ⊆ X be an orbit of
maximal dimension. Let Z = X r Oe. If F is a G-equivariant coherent sheaf on X, then there is
an equivalence of algebraic G-modules

Γ(X,F) ' Γ(Oe,F) +
∑
Oe′⊆Z

(Γ(Oe′ ,Ge′)− Γ(Oe′ ,He′)),

where each Ge′ and He′ is a G-equivariant coherent sheaf on Oe′ .

Proof. We prove this by induction on the dimension of Oe. If Oe = O0 is the zero orbit, the result
is obvious: in this case, O0 = O0, so we just have

Γ(O0,F) = Γ(O0,F).

For higher-dimensional orbits, let j : Oe ↪→ X and i : Z ↪→ X be the inclusions. We proceed by
induction on the number of orbits of maximal dimension in X. The argument is almost the same
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in both the base case and the general case; below, we include a remark at the one point where they
differ.

Let ΓZ(X,F) denote the space of global sections of F whose support is contained in Z. ΓZ(X, ·)
is a left-exact functor; we let Hi

Z(X,F) denote its right-derived functors, the cohomology groups of
X with supports in Z and coefficients in F . There is a long exact sequence of cohomology groups

0→ H0
Z(X,H)→ H0(X,F)→ H0(Oe,F|Oe))→ H1

Z(X,F)→ H1(X,F)→ · · · .

Since X is an affine variety, its higher cohomology groups with coefficients in a coherent sheaf vanish.
Thus H1(X,F) = 0. The above long exact sequence yields, therefore, the four-term exact sequence

0→ ΓZ(X,F)→ Γ(X,F)→ Γ(Oe,F|Oe)→ H1
Z(X,H)→ 0.

Then, if we take the alternating sum of the sequence in the Grothendieck group, we obtain

Γ(X,F) ' Γ(Oe,F|Oe) + ΓZ(X,F)−H1
Z(X,F). (2.1)

We need to understand the last two terms of this formula. These are both finitely-generated modules
for the coordinate ring Γ(X,SX) of X (see [8], Ex. II.5.6 and Ex. III.3.3), so they correspond to
coherent equivariant sheaves on X. Let us call these sheaves H0 and H1, respectively. Each Hq
(q = 0, 1) is supported on Z, so perhaps we should consider the sheaf i∗H. This is a coherent
sheaf on Z; moreover, it is G-equivariant because the inclusion i is a G-equivariant map. Now, the
inductive hypothesis is applicable to Z, because either X contains one orbit of maximal dimension
and Z contains only orbits of strictly lower dimension, or X contains multiple orbits of maximal
dimension, and Z contains fewer. Let Oe1 be an orbit of maximal dimension in Z. Then, using the
inductive hypothesis, we write

Γ(Z, i∗Hq) ' Γ(Oe1 , i∗Hq|Oe1 ) +
∑

Oe′′⊆ZrOe1

(Γ(Oe′′ ,G′e′′)− Γ(Oe′′ ,H′e′′))

'
∑
Oe′⊆Z

(Γ(Oe′ ,G′e′)− Γ(Oe′ ,H′e′)), (2.2)

where we have taken G′e1 = i∗Hq and H′e1 = 0. We would like to substitute this expression into (2.1),
but we cannot do so until we understand the relationship between Γ(X,Hq) and Γ(Z, i∗Hq). Now,
the latter space is given by

Γ(X,Hq)⊗Γ(X,SX) Γ(Z,SZ).

But Z and X are both affine varieties, and we have the explicit description of Γ(Z,SZ) as the
quotient of Γ(X,SX) by the ideal of regular functions that vanish on Z. Since Γ(X,Hq) has support
contained in Z, it follows that Γ(Z,SZ) is the quotient of Γ(X,SX) by an ideal contained in the
annihilator of Γ(X,Hq). Thus, the above expression is simply formalism for regarding Γ(X,Hq) as
a Γ(Z,SZ)-module; but as modules for Γ(X,SX), or as algebraic G-modules, we have equivalences

ΓZ(X,F) = Γ(X,H0) = Γ(Z, i∗H0)

H1
Z(X,F) = Γ(X,H1) = Γ(Z, i∗H1)

Now we can substitute the expressions (2.2) into (2.1), and the result follows.

To convert from the preceding proposition back to the language of vector bundles, we shall need
the following fact (see [8], Ex. II.5.8):

Lemma 2.1.3. If F is a G-equivariant coherent sheaf on Oe, then F is the sheaf of sections of
some finite-dimensional G-equivariant vector bundle on Oe.

Proof. For any x ∈ Oe, let kx denote the residue field of the local ring Sx. Define a function
φ : Oe → Z by

φ(x) = dimkx Fx ⊗Sx k(x).
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This function is constant on Oe by virtue of G-equivariance. It follows with the help of Nakayama’s
Lemma that if φ is constant, F is locally free; i.e., F is the sheaf of sections of a vector bundle.

Now, equivariant vector bundles over a single orbit just correspond to representations of the
isotropy group of that orbit. Since we are at ease with virtual representations, we henceforth allow
virtual equivariant vector bundles and virtual equivariant coherent sheaves on orbits. Of course,
some care is required in manipulating the latter, since the global sections functor Γ is not exact.

Consider the sheaf F = µ∗π
∗Wη over Oe. Suppose that η|Ge ' τ , so that Γ(Oe,F) ' N(e, τ).

If we apply Proposition 2.1.2 to F and combine it with the preceding lemma, we obtain

Γ(Oe, µ∗π∗Wη) ' N(e, τ) +
m∑
i=1

ciΓ(Oei ,Gei),

where each ci ∈ {+1,−1}, and the Oei ’s are orbits contained in the boundary of Oe. (We have
merely combined the positive and negative boundary terms from Proposition 2.1.2 into a single
summation.) Every term on the right-hand side of this expression can be written as a finite sum∑
mσ IndGT σ. In the end, we will be able to obtain such a sum explicitly by analyzing the left-hand

side of this equation, but we will not be able to separate that sum into terms arising from N(e, τ)
and terms arising from vector bundles on smaller orbits. This fact motivates us to resolve our earlier
approximate description of γ with the following definition:

Definition 2.1.4. Consider all expressions of the form

N(e, τ) +
m∑
i=1

ciΓ(Oei ,Gei) =
∑

σ∈Λ+(G)

mσ IndGT σ, (2.3)

where each Oei is some orbit contained in the boundary of Oe, Gei is a G-equivariant coherent sheaf
on Oei , and the ci are integers. For each choice of Gei ’s and ci’s, there is some largest σ that appears
on the right-hand side. We define

γ : {(e, τ)} → Λ+(G)

by taking γ(e, τ) to be the minimum largest weight that can occur on the right-hand side, where
the minimum is taken over all choices of Gei ’s and ci’s.

(There is no harm in allowing the ci’s to be any integers, rather than just +1 or −1, in this definition.)
Earlier it was promised that we would use Lie algebra cohomology to do computations on Oe.

These techniques will not help us compute Γ(Oe, µ∗π∗Wη) directly, but they will help us with the
related sum ∑

q≥0

(−1)qH0(Oe, Rqµ∗π∗Wη). (2.4)

We can analyze this module with the help of Proposition 2.1.2. We know that the restriction of µ to
µ−1(Oe) is an isomorphism with Oe. Therefore, (µ|µ−1(Oe))∗ is exact, and its right-derived functors
are zero. In other words, for any sheaf G on G×Pe ve and any i > 0, we have that Riµ∗(G)|Oe is the
zero sheaf.

Let Fi = Riµ∗π
∗Wη. From the preceding discussion, we know that for i > 0, Fi must be

supported on ∂Oe. Applying Proposition 2.1.2 to Fi, we see that Γ(Oe,Fi) is isomorphic to a sum
of Γ(Oe′ ,Ge′)’s over smaller orbits. So the expression in (2.4) is a G-module of the form shown on
the left-hand side of Equation (2.3).

Our strategy for computing γ will be to show that for an appropriate choice of virtual Pe-
representation (η,Wη) whose restriction to Ge is isomorphic to τ , the expression in (2.4) achieves
the minimum possible largest σ when written in the form of the right-hand side of (2.3). We will
obtain an explicit formula for (2.4), so once we understand what it means to choose η “appropriately,”
we will be able to compute γ(e, τ) explicitly as well.

We begin by tackling the computation of (2.4), to which end we employ the Leray spectral
sequence:

Hp(Oe, Rqµ∗π∗Wη) =⇒ Hp+q(G×Pe ve, π
∗Wη).

18



We actually want to compute certain entries in the E2 term of this spectral sequence, not the module
to which the sequence converges. So we shall work backwards, obtaining the limit of the spectral
sequence by other means, and then trying to deduce something about the E2 term. Fortunately, we
can conclude at the outset that most of the entries in the E2 term vanish: because Oe is an affine
variety, its higher cohomology with coefficients in any coherent sheaf vanishes. And Rqµ∗π

∗Wη is
coherent because µ is proper and π∗Wη is coherent. That is,

Hp(Oe, Rqµ∗π∗Wη) = 0 for p > 0.

We conclude that
H0(Oe, Rqµ∗π∗Wη) = Hq(G×Pe ve, π

∗Wη). (2.5)

We still need to compute the right-hand side of the above equation. In this we are aided by the
lemma below. If F is a vector space or a representation, we use Si(F ) to denote the i-th symmetric
power of F , and S(F ) to denote the entire symmetric algebra.

Lemma 2.1.5. We have the following relationship between cohomology groups over G×Pe ve and
G/Pe:

Hq(G×Pe ve, π
∗Wη) = Hq(G/Pe, G×Pe (Wη ⊗ S(v∗e))). (2.6)

Proof. The map π is the projection map of a vector bundle (with fiber ve), so it is an affine morphism
of varieties. Therefore,

Hq(G×Pe ve, π
∗Wη) ' Hq(G/Pe, π∗π∗Wη).

We just need to show that π∗π∗Wη is the sheaf of sections of G×Pe (Wη ⊗S(v∗e)). But we also have
that because the sheaf of sections of Wη is locally free of finite rank,

π∗π
∗Wη ' π∗(SG×Peve)⊗Wη.

Now, it is easy to check that π∗(SG×Peve) is just the sheaf of sections of the vector bundle in which
the fiber over x ∈ G/Pe is the ring of regular functions on π−1(x). But π−1(x) ' ve, and the
regular functions on the latter space are given by the symmetric algebra of its dual. In other words,
π∗(SG×Peve) is the sheaf of sections of G ×Pe S(v∗e). It follows that π∗π∗W is the sheaf of sections
of G×Pe (W ⊗ S(v∗e)).

Now, a theorem of Bott [6] almost computes the right-hand side of (2.6) for us. Specifically, if U
is a completely reducible representation of Pe and U = G×Pe U is the corresponding vector bundle
over G/Pe, then

Hq(G/Pe,U) =
⊕

(σ,Mσ)∈Ĝ

Hq(pe, le,Hom(Mσ, U))⊗Mσ. (2.7)

In our case, Wη ⊗ S(v∗e) is not completely reducible (because v∗e is not). But an Euler-Poincaré-
principle version of (2.7) still holds. That is, if we take the alternating sum of (2.6) with respect to
q, the right-hand side is actually computed by the alternating sum of (2.7). Combining this with
(2.5) and (2.4), we conclude that⊕

q≥0

(−1)qH0(Oe, Rqµ∗π∗Wη) =
⊕
q≥0

(σ,Mσ)∈Ĝ

(−1)qHq(pe, le,Hom(Mσ,Wη ⊗ S(v∗e))⊗Mσ.

Finally, we observe that in the above equation, we do not need to know the Lie algebra cohomol-
ogy groups themselves, just their alternating sum. The Euler-Poincaré principle helps us out once
more: tracing through the definitions of Lie algebra cohomology, one can show that⊕

q≥0

(−1)qHq(pe, le, U) =
⊕
q≥0

(−1)q HomLe(
∧q

ue, U).
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Definition 2.1.6. Suppose that for each nilpotent orbit in G we have fixed a particular sl(2)-
triple containing a representative element of the orbit, and that we have thence defined ue, ve, and
Pe = LeUe as above. For any (possibly virtual) representation (η,Wη) of Pe, we define a certain
representation Θ(η) of G as follows:

Θ(η) =
⊕
q≥0

(σ,Mσ)∈Ĝ

(−1)q HomLe(
∧q

ue,Hom(Mσ,Wη ⊗ S(v∗e)))⊗Mσ. (2.8)

For future reference, we summarize the developments in this section with the following result.

Proposition 2.1.7. If η|Ge ' τ , then Θ(η) is an approximation to N(e, τ), in the sense that

Θ(η) = N(e, τ) +
∑

Oe′⊆∂Oe
(τ ′,Vτ′ )∈Ĝ

e′

cτ ′N(e′, τ ′),

where only finitely many of the cτ ′ ’s are nonzero.

Proof. The preceding computations show that Θ(η) is isomorphic to the module in (2.4). Recall
that that module has a decomposition of the sort seen in (2.3), by repeated application of Propo-
sition 2.1.2. Lemma 2.1.3 tells us that the terms of the form Γ(Oei ,Gei) are all spaces of sections
of equivariant vector bundles on smaller orbits. Each Γ(Oei ,Gei) can be identified as the space of
sections of some G-equivariant vector bundle V = G ×Gei V . V in turn can be written as a finite
sum of irreducible representations of Ge. If V =

∑
cτ ′Vτ ′ , then

Γ(Oei ,Gei) =
∑

cτ ′Γ(Oei ,Vτ ′) =
∑

cτ ′N(ei, τ ′).

We sum up such expressions over all the Oe′ ⊆ ∂Oe, and the proposition follows.

2.2 Computations over the Orbit Closure

Let us recap the strategy we have been pursuing thus far. Proposition 2.1.7 gives us a formula
enticingly similar in form to that in (2.3). In the latter, of course, the part of the sheaf supported
on the boundary of the orbit is supposed to be carefully chosen so as to minimize the largest
weight occurring on the right-hand side. If we could compute the expressions (2.8), then perhaps
minimizing that largest term in (2.3) would just be a matter of making the “right” choice of virtual
representation η.

In this, section, we show how to compute Θ(η) in the case that η is an irreducible representation;
additivity then lets it be computed for any virtual representation. We start with some manipulations
of the formula in (2.8).

Θ(η) =
∑

(−1)q HomLe(
∧q

ue,Hom(Mσ,Wη ⊗ S(v∗e)))⊗Mσ

=
∑

(−1)q HomLe(
∧q

ue,M
∗
σ ⊗Wη ⊗ S(v∗e))⊗Mσ

=
∑

(−1)q HomLe(
∧q

ue ⊗ S(ve),M∗σ ⊗Wη)⊗Mσ

Next, we need the following general facts from commutative algebra.

Lemma 2.2.1. Let (π, F ) be a finite-dimensional representation of a group H over a field k, not
necessarily irreducible, and let F ' F ′⊕F ′′ be an H-equivariant decomposition of it. Then we have
the following equivalence of representations:∧q

F '
∑
r+s=q

∧r(F ′)⊗∧sF ′′.
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Corollary 2.2.2. In the context of the preceding lemma, we have the following equivalence of
virtual representations:

∑
q

(−1)q
∧q
F '

(∑
r

(−1)r
∧r
F ′

)
⊗

(∑
s

(−1)s
∧s
F ′′

)
.

Proof. The right-hand side can be rewritten as∑
q

(−1)q
∑
r+s=q

∧r
F ′ ⊗

∧s
F ′′,

and the result follows.

Lemma 2.2.3. Let (π, F ) be a finite-dimensional representation of a group H over a field k. Then
we have the following equivalence of virtual representations:

∑
q≥0

(−1)q
∧q
F ⊗ Sm−q(F ) '

{
k if m = 0;
0 if m > 0.

(Here k is considered as the trivial representation of H.)

Proof. We prove this by interpreting the above expression as the alternating sum of the de Rham
complex of polynomial functions on the space F ∗. That is, let

Cq(F ∗) =
∧q
F ⊗ S(F ).

If F has a basis x1, . . . , xn, then we suppose that elements of Cq(F ∗) can be written in the form∑
(polynomial in x1, . . . , xn) dxi1 ∧ · · · ∧ dxiq ,

where d : Cq(F ∗)→ Cq+1(F ∗) has its usual meaning. What is the cohomology of this complex? It
is easy to check that Hq(F ∗) = 0 for q ≥ 1, but in C0(F ∗), the “constant functions” on F ∗ are in
the kernel of d, but there is no image. So H0(F ∗) = k. Moreover, we can identify this space with
the zeroth exterior power of F . Taking the alternating sum of the cohomology groups, we get∑

q≥0

(−1)qHq(F ∗) =
∧0
F = k.

We would now like to conclude that
∑

(−1)qCq(F ∗) = 0 by the Euler-Poincaré principle, but since
the Cq(F ∗) are infinite-dimensional, some care is required when treating them in a virtual context.
To that end, we impose a grading on the de Rham complex as follows:

Cqi (F ∗) =
∧q
F ⊗ Si−q(F ).

Then, d respects the grading, so we get graded cohomology groups as well. All the Hq
i (F ∗) are zero

except when q = i = 0. We are now able to apply the Euler-Poincaré principle in this graded setting,
and obtain ∑

q≥0

(−1)qCqi (F ∗) =

{
k if i = 0;
0 if i > 0.

This is precisely the statement of the lemma.

Applying the preceding lemmas to the expression for Θ(η) results in the following simplification.
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Note that we permit ourselves to decompose ue over Le as ue/ve ⊕ ve.

Θ(η) =
∑

(σ,Mσ)∈Ĝ

HomLe

(∑
q

(−1)q
∧q

ue ⊗ S(ve),M∗σ ⊗Wη

)
⊗Mσ

=
∑

(σ,Mσ)∈Ĝ

HomLe

(∑
r

(−1)r
∧r(ue/ve)⊗∑

s

(−1)s
∧s

ve ⊗ S(ve),M∗σ ⊗Wη

)
⊗Mσ

=
∑

(σ,Mσ)∈Ĝ

HomLe

(∑
r

(−1)r
∧r(ue/ve),M∗σ ⊗Wη

)
⊗Mσ (2.9)

This equation expresses Θ(η) as a sum over all finite-dimensional irreducible G-representations, with
coefficients given by the dimensions of certain HomLe groups. To mold this formula into a more
tractable form, we turn our attention to those groups.

If λ is a dominant weight of Le, let (ηλ,Wλ) denote the irreducible Le-representation of highest
weight λ. Write

∑
(−1)r

∧r(ue/ve) as a sum of irreducible representations; say

∑
(−1)r

∧r(ue/ve) ' k∑
i=1

miWξi , (2.10)

with the mi ∈ Z (possibly negative) and the ξi distinct and dominant. Then, the coefficient of Mσ

in (2.9) is given by
k∑
i=1

mi dim HomLe(Wξi ,M
∗
σ ⊗Wη). (2.11)

The dimension of the Hom group in this form of the equation is just the multiplicity of Wξi in the
Le-representation M∗σ ⊗W .

Let WLe denote the Weyl group of Le, and let ρLe denote half the sum of its positive roots.

Proposition 2.2.4. Let (ηλ,Wλ) be an irreducible representation of Le with highest weight λ,
and let λ1, . . . , λk be the highest weights of the irreducible constituents of

∑
(−1)r

∧r(ue/ve), and let
those constituents have multiplicities m1, . . . ,mk, respectively, as in (2.10). Then

Θ(ηλ) '
k∑
i=1

∑
w∈WLe

mi IndGT Cλ+ρLe−w(ξi+ρLe ). (2.12)

Proof. We need to evaluate (2.11) more explicitly; i.e., we need to compute the multiplicity of Wξi

in M∗σ ⊗Wλ. For this, we recall the following formula.

〈Wξi ,M
∗
σ ⊗Wλ〉 =

∑
w∈WLe

(−1)w dimM∗σ,w(ξi+ρLe )−(λ+ρLe ). (2.13)

Here M∗σ,ν is the ν-weight space of M∗σ .
This reasoning lets us compute as follows:

Θ(ηλ) =
∑

(σ,Mσ)∈Ĝ

〈Wξi ,M
∗
σ ⊗Wλ〉Mσ

=
∑

(σ,Mσ)∈Ĝ

∑
w∈WLe

(−1)w dimM∗σ,w(ξi+ρLe )−(λ+ρLe ).

Now, the dimensions of the weight spaces in a dual of a given representation are such that
dimM∗σ,ν = dimMσ,−ν . In addition, the dimension of a weight space of Mσ can be regarded as the
multiplicity of a certain T -representation in the restriction Mσ|T . With these observations in mind,
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we rewrite as follows.

Θ(η) =
∑

(σ,Mσ)∈Ĝ

∑
w∈WLe

(−1)w〈Cλ+ρLe−w(ξi+ρLe ),Mσ|T 〉Mσ.

The proposition follows by Frobenius reciprocity.

Now, we could of course replace any weight appearing on the right-hand side of (2.12) by any
WG-conjugate of itself, where WG denotes the Weyl group of G, without changing the validity of
the equation. It follows that for any virtual representation (η,Wη) of Pe, we can now write down
an expression

Θ(η) =
∑

σ∈Λ+(G)

mσ(η) IndGT Cσ, (2.14)

in which every weight σ is taken to be dominant; that is, we know how to write down the expression
in (1.1).

2.3 Further Simplification in Special Cases

Recall our hope from the beginning of Section 2.2 that the “right” choice of virtual representation
η with η|Ge ' τ would permit γ(e, τ) to be read off from a computation of Θ(η). What might
constitute such a “right” choice? An elementary approach to constructing such an η would be to
start with an irreducible Pe-representation η0 such that τ occurs as a summand in ηλ|Ge , and then
subtract off “smaller” Pe-representations as necessary.

We naturally prefer easy computations to hard ones, and finding the right “smaller” Pe-represen-
tations to subtract off might well be hard. Perhaps, then, the “right” choice of virtual representation
η comes down to a “right” choice of irreducible representation η0 as a starting point. That is, we
hope that if we choose η0 properly, the largest term of Θ(η) is actually the largest term of Θ(η0),
in which case we do not to worry about the full virtual structure of η, and we only even need to
compute the expression (2.12) for one irreducible.

Even for a single irreducible, however, writing out (2.12) is not trivial. In the following two
subsections, we explore how that formula might be simplified under two different sorts of assumptions
about ue and ve. We shall also make explicit, under each of these assumptions, what it might mean
to make the “right” choice of irreducible Pe-representation.

2.3.1 Richardson orbits Richardson orbits are orbits that are induced from the zero orbit
in some Levi subalgebra. If Oe is such an orbit, and Pe = LeUe is taken to be a parabolic such that
Oe is induced from the zero orbit in le, we have that Oe meets ue in a dense open subset. We can
therefore take ve = ue.

Another requirement that must be met for the work of the preceding two sections to be applicable
is the containment condition Ge ⊆ Pe. This condition does not always hold, so what follows cannot
be applied to all Richardson orbits in all reductive groups. However, the condition is satisfied in the
case of one important example: that of GL(n,C), in which every orbit is Richardson. (In the next
chapter, we shall fix this as our choice of parabolic for computations in that group.)

In this setting, the only highest Le-weight on ue/ve is 0, so the formula in (2.12) reduces to∑
w∈WLe

(−1)w IndGT Cλ+ρLe−wρLe . (2.15)

We shall find it convenient to be able to refer to the weights appearing on the right-hand side of
the formula with an abbreviated notation, so we introduce such a notation now. If λ is a dominant
weight of Le, then for any w ∈WLe , we define Ewλ to be the weight

λ+ ρLe − wρLe ,
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In particular, we are often interested in the largest term occurring in (2.15). The size of these terms
is given by

‖Ewλ‖2 = ‖λ+ ρLe‖2 + 2〈λ+ ρL−e,−wρLe〉+ ‖ρLe‖2.

(For the last term, we have ‖−wρLe‖2 = ‖ρLe‖2.) Only the middle term depends on w, and this
term is maximized when −wρLe is dominant. Since −ρLe is always in the WLe -orbit of ρLe , Ewλ
achieves its maximum size when it is equal to λ+ 2ρLe . We introduce the additional notation

Eλ = λ+ 2ρLe ,

and we remark again that there always exists some w ∈WLe such that Ewλ = Eλ.
Recall our hope that if (η,Wη) is chosen “appropriately” and has η|Ge ' τ , then γ(e, τ) may be

computed by examining Θ(η). We make this hope more precise now.
We continue to assume that ue = ve, so that (2.12) takes the form (2.15). Let us suppose that

there is a unique largest σ occurring in (2.14) with mσ(η) 6= 0, and let ξ(η) denote this largest
weight σ. We now have an explicit formula for Θ(η) in such a form that it is easy to read off ξ(η):
if η =

∑
ciηλi , where the ηλi ’s are irreducible representations with highest weights λi, then

ξ(η) = the largest Eλi.

Note that even if the supposition of the existence of a unique such σ fails, and there are multiple
weights of maximal size that occur with nonzero coefficient, then there is nevertheless still a well-
defined maximal size. By abuse of notation, we let ‖ξ(η)‖2 denote this maximal size. Thus, ‖ξ(η)‖2
is defined for any η, even when ξ(η) is not.

Claim 2.3.1. Suppose that ue = ve, and let (ηλ,Wλ) be an irreducible Pe-representation of highest
weight λ, with the following properties:

(a) The irreducible Ge-representation (τ, Vτ ) occurs in the restriction Wλ|Ge .

(b) Over all irreducible Pe-representations whose restrictions to Ge contain τ as a constituent, the
function ‖ξ(·)‖2 takes its minimal value at ηλ.

Then, there is a virtual representation (η,Wη) of Pe consisting of (ηλ,Wλ) plus other irreducible
representations with smaller highest weights, and with the property that η|Ge ' τ . In particular,

γ(e, τ) = ξ(η) = ξ(ηλ) = Eλ.

This claim will serve as intuition for much of our work in GL(n,C); ultimately, in Chapter 5, we
will establish this claim in the course of proving Theorem 3.

2.3.2 Using the Jacobson-Morozov parabolic If we use the Jacobson-Morozov parabolic
to define ue and ve, then ue 6= ve unless the niloptent e is even. Nevertheless, this is an easy way to
produce the setup of Section 2.1 for any orbit in any group, so it is worth seeing what we can make
of Proposition 2.2.4 in this setting.

Recall that the construction entails construing the nilpotent element e as an element of an sl(2)-
triple {h, e, f}; then, ue and ve are defined as certain sums of h-eigenspaces:

ue =
⊕
i≥1

gi ve =
⊕
i≥2

gi,

where gi is the h-eigenspace of eigenvalue i. We can thence identify ue/ve = g1.
Since it is possible to read off the weights that occur in g1 from the weighted Dynkin diagram of an

orbit, we can in principle evaluate expressions of the form (2.12) now. Nevertheless, identifying the
extremal Le-weights in the alternating sum of exterior powers of g1 can be daunting computationally.
The list of all weights in this alternating exterior algebra is easier to specify: there are 2dim g1 of
them, and they are given as sums of subsets of the weights of g1. And since the extremal weights
of an irreducible representation are larger in size than any of the other weights, it is reasonable to
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guess that the largest term in (2.12) can be found simply by trying all possible subsets of weights
in g1.

Let P denote the set of weights occurring in g1, and let w0 ∈WLe be the element which exchanges
the dominant and antidominant Weyl chambers.

F(λ) =
{
λ+

∑
ν∈P

w0(−ν)
∣∣∣∣P ⊆ P} (2.16)

With the goal of stating an analogue of Claim 2.3.1, we introduce the following notation.

Fλ = the element of F(λ) of maximal size, (2.17)

provided of course that a unique such element exists. Even if not, we, as before, abusively employ
the following notation:

‖Fλ‖2 = max{‖ν‖2 | ν ∈ F(λ)}.

Claim 2.3.2. Suppose that ue is the nilradical of the Jacobson-Morozov parabolic for Oe, and ve
is the sum of the eigenspaces of eigenvalue at least 2 for the semisimple element of the Jacobson-
Morozov triple. Let (ηλ,Wλ) be an irreducible Pe-representation of highest weight λ, with the fol-
lowing properties

(a) The irreducible Ge-representation (τ, Vτ ) occurs in the restriction Wλ|Ge .

(b) Over all highest weights of all irreducible Pe-representations whose restrictions to Ge contain
τ as a constituent, the function ‖F (E·)‖2 takes its minimal value at λ.

Then, there is a virtual representation (η,Wη) of Pe consisting of (ηλ,Wλ) plus other irreducible
representations with smaller highest weights, and with the property that η|Ge ' τ . In particular,

γ(e, τ) = F (Eλ).

This claim guides some of the work in Chapter 6, as well as some of the computations in Ap-
pendix B.

2.4 The Zero and Principal Orbits

We conclude this chapter by giving an explicit computation of γ on the zero and principal orbits
in any complex reductive group. We first recall the definition of minuscule weights, and we introduce
the idea of majuscule weights by analogy.

Definition 2.4.1. Let ∆ be the root system for G, and let Π be a choice of simple roots. For
α ∈ ∆, let α∨ denote the corresponding coroot. An integral weight λ is called minuscule if

|〈α∨, λ〉| ≤ 1 for all α ∈ ∆.

Conversely, λ is said to be majuscule if

|〈α∨, λ〉| ≥ 2 for all α ∈ Π.

Let O0 denote the zero orbit, and Oprinc the principal orbit. The isotropy group of O0 is of
course all of G.

Theorem 2.4.2. Let G be connected complex reductive Lie group. Let Vλ be the irreducible
representation of highest weight λ. When restricted to the zero orbit, the image of γ is precisely the
set of majuscule weights, and γ is given by the formula

γ(O0, Vλ) = λ+ 2EG.
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When restricted to the principal orbit, the image of γ is precisely the set of minuscule weights. In
this case, γ gives a bijection between representations of the center of G and the set of minuscule
weights.

Proof. Computing γ on the zero orbit is quite easy. The space of sections of the vector bundle over
the orbit arising from the irreducible representation Vλ is again just Vλ: we are not overwhelmed by
the mathematical complexity of vector bundles over a single point. Now, we just need to write Vλ
itself in the form of (1.1) and read off its largest weight. That task is easy enough: one form of the
Weyl character formula gives us

Vλ =
∑
w∈W

(−1)w IndGT Cλ+ρG−wρG .

The largest term on the right-hand side of this expression is λ+2ρG. Now, ρG itself has inner product
1 with every simple coroot, so it follows that weights of the form λ+ 2ρG, where λ is dominant, are
precisely the majuscule weights.

For the principal orbit, as noted above, the reductive part of the isotropy group is just the center
of the group Z(G), and the Jacobson-Morozov Levi is the torus T . There is a well-known bijection
between representations of the center of G and minuscule weights, which are in turn a set of coset
representatives for

Λ(G)/Z∆(G),

where Z∆(G) is the root lattice. Indeed, for any given representation of T , i.e., any weight, its
restriction to Z(G) depends only on the coset to which it belongs in the above quotient. Now, let λ
be some nonminuscule weight, and let λ′ be the minuscule weight in the same coset of Λ(G)/Z∆(G)
as λ. The T -representations λ and λ′ are isomorphic upon restriction to Z(G), so Cλ′ − C′λ is a
virtual T -representation whose restriction to Z(G) is the zero representation. Applying (2.12) in
this context, with Le = T , we find that

IndGT Cλ′ − IndGT Cλ (2.18)

is an expression supported on the boundary of the principal orbit, so we can add it to any expression
of the form in (2.3). In particular, if we have obtained such an expression in an attempt to compute
some γ(eprinc, τ) in which the largest term is not minuscule, we can always add an expression of
the form (2.18) to eliminate that largest term. It follows that over all possible expressions of the
form (2.3), the one with the minimal largest weight must include only minuscule weights. Finally,
since the minuscule weights are in one-to-one correspondence with the irreducible representations
of Z(G), we observe that if the virtual T -representation under consideration is to have the right
restriction to Z(G), we must have exactly one minuscule weight appearing in (2.3), viz., the one
corresponding to the Z(G)-representation under consideration. Thus, on the principal orbit, the
values of γ are precisely the minuscule weights.
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CHAPTER 3

Computational Machinery for the General Linear Group

In this chapter, we introduce the machinery that will enable us to prove Theorem 3. Recall that
in GL(n,C), nilpotent orbits are indexed by partitions of n. We shall use boldface letters like d to
denote partitions, and “absolute-value bars” as in |d| to denote the sum of a partition. An example
of the notation we use to write down a partition explicitly, with exponents giving multiplicities, is
as follows: d = [6, 32, 2, 14]. (Thus, for this partition, |d| = 18.)

For the next few chapters, we shall be working exclusively with GL(n,C), so we modify the
notation of Chapter 2 to one that is more convenient in this setting. We label orbits and centralizers
by partitions rather than by nilpotent elements: thus, O[n] is the principal orbit, and G[1n] is the
centralizer of the zero orbit (i.e., the entire group).

In the context of GL(n,C), Pd = LdUd will always denote a certain parabolic subgroup with
respect to which the orbit Od is Richardson. (The group Ld is identified more explicitly below.) Gd

also has a decomposition as a semidirect product of a reductive group Gd
red and a unipotent group

[7]. In both these cases, the unipotent part must act trivially in irreducible algebraic representations,
and henceforth, we liberally confuse irreducible algebraic representations of the whole group with
those of the Levi factor.

In particular, we adopt the following abuse of notation: if (τ, Vτ ) is an irreducible representation
of Gd, we also write “τ” for the highest weight of Vτ regarded as a Gd

red-module. This ought not
be overly confusing, since we will never speak of Gd-modules that are not irreducible. With Pd and
Ld, on the other hand, we will be dealing with reducible representations, so we shall be somewhat
less abusive in notation: if λ is a dominant weight of Ld, we let (ηλ,Wλ) be the irreducible Pd-
representation on which Ld acts with highest weight λ and Ud acts trivially.

Given a partition d = [ka1
1 , . . . , kall ], define GL(d) to be the subgroup GL(k1)a1 × · · · ×GL(kl)al

of GL(n). Let d∗ denote the dual partition of d. It is easy to check that Gd
red is isomorphic to

GL(a1)× · · · ×GL(al), and that Ld is isomorphic to GL(d∗) [7].
Let D(d) denote the weight lattice of GL(d∗), and let

Dn =
∐
|d|=n

D(d).

(We write D(d) instead of Λ(GL(d∗)) for purposes of analogy with another notation that we intro-
duce shortly.) If d∗ = [mb1

1 , . . . ,m
bp
p ], then a weight of GL(d∗) consists of b1 m1-tuples of integers,

b2 m2-tuples, etc. Since |d∗| = n, a weight of GL(d∗) is really just an n-tuple of integers, which one
might think as being subdivided into smaller tuples according to the parts of d∗.

3.1 Weight Diagrams

We shall devise a particular way of writing down elements of Dn with diagrams, but there may
be multiple possible diagrams for a given element of Dn. We write D̃n =

∐
D̃(d) for this set of

diagrams, and we shall have a collection of surjective maps π : D̃(d) → D(d). For each orbit, we
also get a map

κ : D̃n →
∐
|d|=n

Λ+(Gd
red),
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that computes the restriction of an Ld-weight to Gd
red. (Caveat lector, however: see Remark 3.1.2.)

Recall also the map E which adds 2ρLd
from the end of Chapter 2. We will have a lifting a this

map to one at the diagram level: E : D̃(d)→ D̃(d).
In Chapter 4, we will define a certain subset D̃◦n of D̃n which will be in bijection with the set of

dominant weights of GL(n), and which will serve as an intermediary between the set of pairs {(d, τ)}
and Λ+(G) in our quest to compute γ. The proposed weight-diagram method for computing γ is
encapsulated in the following diagram.∐

|d|=n

Λ+(Gd
red) κ←−−−− D̃n

α−−−−→ D̃◦n
E−1◦β←−−−−
'

Ĝ

Once we have this machinery in place, we will be well on our way to proving Claim 2.3.1 in the
context of GL(n,C), and to proving that γ is a bijection.

Definition 3.1.1. A weight diagram is a diagram of left-justified rows of boxes with integer
entries. The set of all weight diagrams with a total of n boxes is denoted D̃n. If d is a partition of
n, then a weight diagram X ∈ D̃n is said to be of shape-class d if the row lengths of X are given by
the parts of d. The set of all weight diagrams of shape-class d is denoted D̃(d).

We do not say “of shape d,” as one might when discussing Young tableaux, because in our case the
partition does not determine the shape of the diagram. (The row lengths are not required to be
nonincreasing as one goes down the diagram.)

How do diagrams in D̃(d) relate to weights in D(d) or Λ+(Gd
red)? Recall that Ld ' GL(d∗). If

X ∈ D̃(d), then the column lengths of X are the parts of d∗. We define π : D̃n → Dn by regarding
each column of a diagram X as the weight of the corresponding factor of Ld ' GL(d∗).

Recall that if d = [ka1
1 , . . . , kall ], then Gd

red = GL(a1) × · · ·GL(al). Given X ∈ D̃(d), then, we
can obtain a weight of Gd

red as follows: the coordinates of the GL(ai)-component of the weight will
be the sums of the ai rows of length ki in X. For example,

X =

5 6
2 3 1 0
8 2
1 1 1

gives the weight (6, 3, (11, 10)) of G[4,3,22]
red = GL(1)×GL(1)×GL(2). This row-summing procedure

associates to any diagram in D̃(d) a weight of Gd
red, and hence defines a map κ̃ : D̃(d) → Λ(Gd

red).
We define κ : D̃(d)→ Λ+(Gd

red) by

κ(X) = the unique dominant weight in the Weyl group orbit of κ̃(X).

For τ an irreducible algebraic representation of Gd or, equivalently, a dominant weight of Gd
red,

we define
D̃(d, τ) = {X ∈ D̃(d) | κ(X) = τ}.

Remark 3.1.2. It seems that one ought to be able to restrict weights of Ld to Gd
red without

going through the artifice of weight diagrams, but κ does not descend to a map D(d) → Λ(Gd
red).

That is, one can readily construct diagrams X, X ′ of the same shape-class, and whose columns are
the same, but whose row-sums are not. The reason for this is that there is not a unique imbedding
Gd

red ↪→ Ld. Diagrams of a given shape-class determine conjugate imbeddings, but only if one fixes a
particular shape of shape-class d (thus choosing a specific imbedding) and considers only diagrams
of that shape does κ induce a restriction map D(d)→ Λ+(Gd

red).

We introduce the notation Xir to refer to the entry in row i, column r of the diagram X.

Definition 3.1.3. Xir and Xjr are said to be column-consecutive if j > i and all the positions
Xi+1,r, . . . , Xj−1,r are empty. Xjr is then the column-successor of Xir, and Xir is the column-
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predecessor of Xjr. An entry is column-last if it has no column-successor, and it is column-first if it
has no column-predecessor.

The next definition we need is that of E : Dn → Dn. EX is defined to be a a diagram of the same
shape as X, whose entries are given by

(EX)ir = Xir + #{Xjr | Xjr < Xir, or Xjr = Xir with j > i}
−#{Xjr | Xjr > Xir, or Xjr = Xir with j < i}.

For the example above, we compute

E(X) =

6 9
1 4 2 0
11 1
−2−2 0

It is easy to verify that this E agrees with the E we already have for weights of the Ld’s, in the
following sense: if π(X) is dominant, then so is π(EX), and in fact

π(EX) = π(X) + 2ρLd
.

(In general, π(EX) is equal to π(X) plus the sum of positive roots, with respect to a choice of
positive roots that makes π(X) dominant.)

3.2 Manipulating Elements of D̃n

In this section, we lay the groundwork for the algorithm α to be defined in the next chapter.
Specifically, we write down a list of three “moves” that one can perform on a diagram in D̃n to
obtain a new diagram. Each move will have associated to it certain permissibility criteria. The
algorithm will be essentially, “At each stage, do any move whose permissibility criteria are satisfied;
stop when no move’s permissibility criteria are satisfied.” First, a few definitions:

Definition 3.2.1. Xir is lowerable if either it is column-last, or it has column-successor Xi′r

with Xir > Xi′r. It is raisable if either it is column-first, or it has column-predecessor Xi′r with
Xir < Xi′r.

To lower (resp. raise) Xir, or X at position ir, is to construct a new diagram of the same shape
and entries as X, except that its entry in position ir is obtained by subtracting 1 from (resp. adding
1 to) Xir.

Let X ∈ D̃n. We state four properties that X may have:

p1(r) (r > 1) For any s, 1 ≤ s < r, such that s ≡ r (mod 2), we have

(a) if r and s are odd and Xis < Xir, then Xis is not raisable.

(b) if r and s are even and Xis > Xir, then Xis is not lowerable.

p2(r) (r > 1) For any s, 1 ≤ s < r, we have

(a) if Xis ≤ Xir − 2, then Xis is not raisable.

(b) if Xis ≥ Xir + 2, then Xis is not lowerable.

p3(r) (r > 1) If r is odd, every difference EXir −EXi,r−1 is either 0 or +1. If r is even, every such
difference is either 0 or −1.

p4(r) Column r of X has entries in non-increasing order.
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q1(X) = ‖EX‖2

q2(X) =
∑
r even

∑
i

EXir

q3(X) =
∑
r odd

∑
i

r EXir −
∑
r even

∑
i

r EXir

q4(X) = −max{r | P3(r) and P4(r) both hold}

q5(X) =
∑

{j|Xjr nonempty}

q̃5;jr(X) where r = q4(X) + 1

q6(X) =
∑

{j|Xjr nonempty}

q̃6;jr(X) where r = q4(X) + 1,

where

q̃5;ir(X) =

{
max{EXir − (EXi,r−1 + 1), EXi,r−1 − EXir} if r is odd
max{EXir − EXi,r−1, (EXi,r−1 − 1)− EXir} if r is even

q̃6;ir(X) =
∑
i′<i

Xi′r nonempty

max{0, Xir −Xi′r}+
∑
i′>i

Xi′r nonempty

max{0, Xi′r −Xir}

Table 3.1. Some integer-valued functions on D̃n.

Every X is said to have properties p1(1) and p3(1), for convenience.
We also define capital-letter versions of these properties: X is said to have P1(r) if it has all

of p1(1), . . . ,p1(r); the properties P3(r) and P4(r) are defined similarly. We suppose that the
properties P1(0), P3(0), and P4(0) always hold, as do P1(1) and P3(1).

Now, the main idea of α will be to modify a diagram X so as to minimize the size of ‖EX‖2,
but we do not understand that goal well enough yet to directly give an algorithm for it. Instead, we
will describe an algorithm that works by trying to bring X closer to having all the properties P1(r),
P2(r), P3(r), and P4(r) for all r; we shall subsequently see that this has the desired consequence
for ‖EX‖2 as well.

In Table 3.1, we define some integer-valued functions that will be used to measure the progress of
the algorithm: the smaller the values of these functions, the more progress we have made. The use
of function q1 is evident; minimizing it is the purpose of the entire algorithm. Now, one implication
of p1(r) and p2(r) is, roughly, that even-numbered columns ought to have smaller entries than
odd-numbered columns; q2 is used to make sure that the entries in even-numbered columns do not
become too large. Another implication of these first two properties is that the largest entries ought
to appear in the leftmost odd-numbered columns, and the smallest entries in the left-most even-
numbered columns. The function q3 tells us if we have too many excessively large or small entries
too far right in the diagram.

Next, q4 just tells us how many columns on the left-hand side of the diagram satisfy p3(r) and
p4(r). It is negative just because we want an increase in the number of such columns as we make
progress. For the leftmost column that does not satisfy p3(r) and p4(r), q5 measures quite directly
how far it is from having p3(r), and q6 does the same for p4(r).

Remark 3.2.2. X has p3(r) for r = −q4(X) + 1 if and only if q5(X) = 0, and it has p4(r) for
r = −q4(X) + 1 if and only if q6(X) = 0.

The three moves that can be performed in the algorithm for α are shown in Table 3.2. The
distinct rows shown in the diagram for each move in this table need not actually be consecutive;
however, any intermediary rows must be shorter than r− 1 boxes (shorter than s− 1 boxes for move
A). The rows that are shown in the diagrams may or may not be longer than r boxes.
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The algorithm for α will also make use of the inverse moves A−1 and B−1. (Of course, C
and C−1 are the same move.) In practice, B and C look like the same move—they both involve
exchanging two rows—but for the sake of proving various facts about the behavior of these moves,
it will be convenient to have separate names for them.

Before giving the algorithm for computing α in full, explicit detail, we collect some useful lemmas
about what happens to a diagram in D̃n when a certain move is performed on it under certain
conditions. For X ∈ D̃n, we write AX, BX, and CX to indicate the diagram resulting from
performing moves A, B, and C respectively. (The values of the parameters s, r, m, and i1, . . . , im
will be clear from context.) Finally, the symbol M will be used to stand for any of the moves A, B,
C, or their inverses.

Definition 3.2.3. MX is said to be well-behaved of order ≥ k, where 1 ≤ k ≤ 6, if there is some
k′, k ≤ k′ ≤ 6, such that

ql(MX) = ql(X) for l = 0, . . . , k′ − 1
and

qk′(MX) < qk′(X).

Lemma 3.2.4. If X ∈ D̃(d, τ), then MX ∈ D̃(d, τ) for any M.

Proof. Moves A and A−1 preserve the shape of the diagram, and on some rows they add +1 to
one entry and −1 to another. Hence the row-sums of X are preserved. In the case of B, B−1,
and C, no entries are changed; rather, we merely exchange two rows. In all cases, we see that
κ(MX) = κ(X).

Lemma 3.2.5. Suppose that X has p4(r) and that Xir is raisable. If Y is a diagram obtained
from X by raising Xir, then EY is equal to EX raised at position ir.

If X has p4(r) and Xir is lowerable, and if Y is X lowered at ir, then EY is EX lowered at ir.

Proof. We prove only the first part of the claim; the second part is proved similarly. E acts on each
column of a diagram individually, so EX and EY will certainly agree in every column other than r.
Now, in general, the amount E adds to the entries of a column depend only on the order of those
entries. In particular, if a column is nonincreasing and of height h, then E adds h − 1 to the first
entry, h− 3 to the second, etc., down to −h+ 1 to the last entry, irrespective of what those entries
actually are.

Because X has p4(r), column r is in fact nonincreasing. Moreover, to say Xir is raisable is to
say that it is strictly smaller than its column-predecessor, so it follows that column r of Y is still
nonincreasing. E acts on both X and Y by adding the same numbers to corresponding entries, so
EX and EY differ only where X and Y differ, with EYir = EXir + 1.

Proposition 3.2.6. Suppose X contains a sequence of rows i1, . . . , im on which A might be
performed, say at columns s and r, with s < r. Furthermore, suppose that q4(X) ≤ −r, Xims is
lowerable, Xi1r is raisable, and EXiks−EXikr ≥ 2 for k = 1, . . . ,m. Then ‖AX‖2 < ‖X‖2. Stated
differently, A is well-behaved on X of order 1.

Proof. We begin by noting that in any column t of X such that p4(t) holds, if Xjt is raisable and
has column-successor Xj′t, then after raising Xjt, position j′t will be raisable in the new diagram:
if Y is the diagram obtained by raising Xjt, then Xjt ≥ Xj′t implies Yjt > Yj′t.

Now, the performance of move A can be broken down into steps as follows:

1. Raise Xi1r; lower Xims.

2. Raise Xi2r; lower Xim−1s.

...
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A

a1 · · · as−1 as · · · ar
...

...
...

...
...

...
a′1 · · · a′s−1 a′s · · · a′r

7→
a1 · · · as−1 as − 1 · · · ar + 1
...

...
...

...
...

...
a′1 · · · a′s−1 a′s − 1 · · · a′r + 1

B
a1 · · · ar−1 ar
a1 · · · ar−1

7→ a1 · · · ar−1

a1 · · · ar−1 ar

C
a1 · · · ar−1 ar
a1 · · · ar−1 a′r

7→ a1 · · · ar−1 a′r
a1 · · · ar−1 ar

Table 3.2. Moves used in the algorithm for computing α

m. Raise Ximr; lower Xi1s.

At each step, the entries being raised and lowered are raisable and lowerable respectively (this is
true in Step 1 by assumption, and in each successive step by what we noted above). It follows by
Lemma 3.2.5 that EAXikr = EXikr + 1 and EAXiks = EXiks − 1 for each k. Therefore,

‖EAX‖2 =
∑
j,t

(EAXjt)2

=
∑
j,t

(EXjt)2 +
m∑
k=1

(
(EAXiks)

2 + (EAXikr)
2 − (EXiks)

2 − (EXikr)
2
)

= ‖EX‖2 +
m∑
k=1

((−2EXiks + 1) + (2EXikr + 1))

= ‖EX‖2 − 2
m∑
k=1

(EXiks − EXikr − 1) (3.1)

Since EXiks − EXikr ≥ 2, the summation in the last line is strictly positive. Thus ‖EAX‖2 <
‖EX‖2.

Proposition 3.2.7. Assume the conditions of Proposition 3.2.6, but weaken the requirement on
entries in EX to EXiks−EXikr ≥ 1. If, in addition, r and s are both even, then A is well-behaved
on X of order ≥ 1.

Proof. We perform the same computation as in the proof of Proposition 3.2.6, and we arrive at
equation (3.1). With the weakened inequality in the present assertion, some of the terms in the
summation in (3.1) may be 0, but provided that at least one of them is positive, we still get
‖EAX‖2 < ‖EX‖2.

If, however, EXiks − EXikr = 1 for every k, then that summation will be 0, so we shall have
q1(AX) = q1(X). We know by Lemma 3.2.5 (as argued in the proof of Proposition 3.2.6) that after
move A, m entries in column s of EX are changed by −1, and m entries in column r are changed
by +1. Thus, the total sum of elements in even-numbered columns is unchanged: q2(AX) = q2(X).
Furthermore, we easily compute that q3 changes by s − r, so q3(AX) < q3(X). Hence A is well-
behaved on X, as claimed.

Proposition 3.2.8. Suppose that move A might be performed on the single row i. Suppose
in addition that q4(X) = −(r − 1) and that q5(X) 6= 0; in particular, suppose that q̃5;ir(X) > 0.
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Furthermore, suppose that EXi,r−1 > EXir, and that Xjr = Xir implies j ≥ i. If s < r and EXis

is lowerable, and

(a) if EXis − EXir ≥ 2, then q1(AX) < q1(X).

(b) if r is odd, s is even, and EXis − EXir = 1, then q1(AX) = q1(X), but q2(AX) < q2(X).

(c) if r and s are both even, and EXis−EXir = 1, then q1(AX) = q1(X) and q2(AX) = q2(AX),
but q3(AX) < q3(X).

Proof. By the assumption that q4(X) = −(r−1), we know that p4(s) holds, so Lemma 3.2.5 applies
to column s. We do not know enough about column r to say how E acts on it precisely, but the
complicated assumptions in the proposition are specifically designed to enable us to compute the
difference in size of EAX and EX regardless.

Let ‖EX∗r‖2 denote the size of the r-th column of EX. This quantity depends on what the
entries in the r-th column are, but it is independent of their order within the column. If the column
contains h entries, of which l are strictly greater than Xir, it is easy to check that replacing Xir by
Xir + 1 results ‖EX∗r‖2 changing by (Xir + 1 + (h− 1− 2l))2 − (Xir + (h− 1− 2l))2, or

2 (Xir + (h− 1− 2l)) + 1. (3.2)

By Lemma 3.2.5, lowering Xis changes ‖EX∗s‖2 by (EXis − 1)2 − (EXis)2, or

−2EXis + 1. (3.3)

The net change in ‖EX‖2 brought about by performing move A on X would be the sum of (3.2) and
(3.3). Now, recalling the definition of E, we can compute EXir explicitly, thanks to the assumption
that Xjr = Xir implies j ≥ i:

EXir = Xir + #{Xjr | Xjr < Xir, or Xjr = Xir with j > i}
−#{Xjr | Xjr > Xir, or Xjr = Xir with j < i}

= Xir + (h− (l + 1))− l.

Thus, expression (3.2) is equal to 2EXir + 1. We obtain that the sum of (3.2) and (3.3) is

q1(AX)− q1(X) = 2− 2(EXis − EXir). (3.4)

Part (a) of the proposition follows because if EXis − EXir ≥ 2, the quantity in (3.4) is strictly
negative. On the other hand, if EXis − EXir = 1, the quantity in (3.4) is 0. If r is odd and s
even, lowering Xis obviously decreases the sum q2 of even-column entries, so part (b) is true as well.
Finally, if r and s are both odd, q2 remains unchanged, but q3 changes by m(s− r): this establishes
part (c).

Proposition 3.2.9. Suppose rows i and i′ of X are such that B or C might be performed on
them: in particular, they agree in their first r−1 entries, and intervening rows have length less than
r − 1. Suppose furthermore that q4(X) = −(r − 1), and that row i has length at least r.

(a) Suppose X has no entry at position i′r. If q̃5;ir > 0 and EXir < EXi,r−1, BX is well-behaved
of order ≥ 4.

(b) Suppose that X does have an entry at position i′r. If Xir < Xi′r, then CX is well-behaved of
order ≥ 4.

Proof. Both of these moves change the shape of the diagram without changing any entries, so q1

is preserved. Moreover, this shape change is brought about by exchanging rows; the entries in any
given column remain the same, albeit possibly rearranged. Hence q2 and q3 are preserved as well.
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Before proceeding, we define two convenient functions:

w5;r(X) =
∑
j

q̃5;jr(X) and w6;r(X) =
∑
j

q̃6;jr(X)

Provided that q4(X) = −(r − 1), we will of course have w5;r = q5 and w6;r = q6. Let us also note
that EXi′,r−1 = EXi,r−1 − 2.

For part (a) of the proposition, EXi,r−1−EXir is greater than or equal to 1 (if r is odd) or 2 (if r
is even). Move B does not change the relative position of entry Xir in column r, so EBXi′r = EXir.
We have

EBXi′,r−1 − EBXi′r = EXi,r−1 − EXir − 2;

we can conclude that
q̃5;i′r(BX) = max{0, q̃5;ir(X)− 2}

and
w5;r(BX) = max{0, w5;r(X)− 2}.

In particular, w5;r(BX) < w5;r(X). This may mean that q4(BX) = q4(X) and q5(BX) < q5(X),
or, if w5;r(BX) = 0 (meaning that BX has p3(r), which X did not), it may be that q4(BX) = −r
and that q5(BX) is unpredictable. In either case, we observe that BX is well-behaved of order ≥ 4.

For part (b), we break down the argument into three cases:

Case 1. q̃5;ir(X) > 0, and EXir > EXi,r−1. In this case, we must have EXi′r > EXir >
EXi,r−1; it is easy to check that

q̃5;ir(CX) = q̃5;i′r(X)− 2
q̃5;i′r(CX) = q̃5;ir(X) + 2.

This equations imply that the following holds (of course, we actually have equality, but we write an
inequality to accomodate the two cases considered below):

q̃5;ir(CX) + q̃5;i′r(CX) ≤ q̃5;ir(X) + q̃5;i′r(X). (3.5)

Case 2. q̃5;ir(X) = 0. This time we have

q̃5;ir(CX) = q̃5;i′r(X)− 2
q̃5;i′r(CX) = 1 or 2.

These facts imply that (3.5) holds here as well.

Case 3. q̃5;ir(X) > 0, and EXir < EXi,r−1. This is the most complicated of the three cases;
part of the computation has to be broken down into three sub-cases. We obtain:

q̃5;ir(CX) =


max{0, q̃5;i′r(X)− 2} if q̃5;i′r > 0 and EXi′r > EXi′,r−1

1 or 2 if q̃5;i′r = 0
q̃5;i′r + 2 if q̃5;i′r > 0 and EXi′r < EXi′,r−1

q̃5;i′r(CX) = max{0, q̃5;ir(X)− 2}

Once again, (3.5) holds.

We finish up the argument almost as we did for part (a), but this time we have only the weaker
inequality w5;r(CX) ≤ w5;r(X) following from (3.5). This gives rise to the possibility that q4(CX) =
q4(X) and q5(CX) = q5(X), compelling us to examine the behavior of q6. But it is clear that move
C brings column r closer to being nonincreasing, in the sense that w6;r(CX) < w6;r(X). If q4 and q5

do not change under move C, then q6(CX) < q6(X). Hence CX is well-behaved of order ≥ 4.
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Conditions Move Well-Behavedness
q4(X) ≤ −r. Order ≥ 1.
Xims is lowerable, Xi1r is raisable, and EXiks−

EXikr ≥ 1 for k = 1, . . . ,m.
A

Xi1s is raisable, Ximr is lowerable, and EXiks−
EXikr ≤ −1 for k = 1, . . . ,m.

A−1

m = 1; q4(X) = −(r − 1). Xi1s is lowerable.
q̃3;i1r(X) 6= 0. If Xjr = Xir, then j ≥ i (for A) or
j ≤ i (for A−1).

Order = 1.

EXi1s − EXi1r ≥ 2.
EXi1s − EXi1r ≤ −2.

A
A−1

r odd, s even, and EXi1s − EXi1r = 1.
r even, s odd, and EXi1s − EXi1r = −1.

A
A−1

q4(X) = −(r − 1); q̃5;i1r(X) > 0
EXi1,r−1 > EXi1r.
EXi1,r−1 < EXi1r.

Xir < Xi′r.

B
B−1

C

Order ≥ 4.

Table 3.3. Well-behavedness of moves under various hypotheses

The facts in Propositions 3.2.6, 3.2.8, and 3.2.9 are collected and summarized in Table 3.3.
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CHAPTER 4

Construction of the Algorithms

At this stage, we are ready to put weight diagrams to work for us. Recall, from Claim 2.3.1, what it
is that we are trying to do with these diagrams: we are trying to find a weight λ of Ld with a given
restriction to Gd

red, such that ‖Eλ‖2 is minimized. In the first section, we describe the algorithm α
that does this, and we do most of the work of proving that ‖Eλ‖2 is minimized, although we will not
actually finish the proof until Chapter 5. We define a particular, highly constrained set of diagrams
D̃◦(d, τ); and we show that α always produces diagrams contained in this set.

In the second part, we go in the reverse direction: given a weight σ of G, we need to produce a
partition d and a weight λ of Ld such that Eλ = σ, and such that λ has a minimal value of ‖Eλ‖2
among Ld-weights having the same restriction to Gd

red. For this we give another algorithm, β, which
constructs a diagram X whose entries are the coordinates of σ and which has E−1X ∈ D̃◦(d, τ) for
some d, τ . Again, the proof that β has the required properties will not be completed until the next
chapter.

Examples of the use of both of these algorithms are given in Appendix A.

4.1 The Algorithm for α

We define α : D̃n → D̃n to be the map computed by the following algorithm: Starting with
X ∈ D̃n, look down the leftmost column in Table 3.3 and find a hypothesis satisfied by X (for some
choice of s, r, and i1, . . . , im), and then perform the corresponding move given in the middle column
to obtain a new diagram X ′. Repeat to obtain X ′′, etc., until some X(p) does not satisfy any of the
conditions in the left column. Then α(X) = X(p).

There is some ambiguity if X satisfies more than one of the hypotheses, or if it satisfies some hy-
pothesis for more than one choice of s, r, and i1, . . . , im. Let us make it definite by deciding always to
choose the first satisfied hypothesis (in the order in which they are listed in the table), together with
the lowest choice of vector (s, r,m, i1, . . . , im) (where these vectors are ordered lexicographically).

For this definition to make sense, we need the following fact.

Proposition 4.1.1. The algorithm for computing α terminates after a finite number of steps.

Proof. The assertion is a consequence of the fact that only well-behaved moves are performed while
computing α. Given a diagram X, let c be the number of columns in X, and consider the map

q : D̃n → N
6

defined by
q(X) = (q1(X), q2(X), q3(X), c+ q4(X), q5(X), q6(X)).

(Here, the c in the fourth coordinate appears only to make that coordinate have a nonnegative
value.) Give N6 the lexicographical ordering; then, to say that MX is well-behaved is to say that
q(MX) < q(X). Furthermore, we evidently have

q(X) ≥ (0, 0, 0, 0, 0, 0).

Each move performed while computing α decreases q, and q is bounded below. Since N6 is well-
ordered, it follows that the algorithm must stop after a finite number of steps.
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Lemma 4.1.2. Suppose X has P1(r), P3(r), and P4(r). If a range of entries Xis, . . . , Xir in a
single row is such that none of them is lowerable (resp. raisable), then all their column-successors
(resp. column-predecessors) lie in a single row. Moreover, if s > 1, then the column-successor
(resp. column-predecessor) of Xi,s−1 lies in that same row as well.

Proof. We prove the statement in the case that none of the entries in the range is lowerable; the
other case is proved similarly. If s = r, the statement is trivial. Assume s < r, and pick any t such
that s ≤ t < t+ 1 ≤ r. Suppose the column-successor of Xit is on row j1, and that of Xi,t+1 on row
j2. There are three cases to consider:

Case 1. EXit = EXi,t+1. Hence EXj1t = EXj2,t+1. But if j1 6= j2, then EXj2,t+1 differs from
EXj2t by at most 1, and EXj2t in turn differs from EXj1t by at least 2, so, EXj1t and EXj2,t+1

must differ by at least 1. Hence j1 = j2.

Case 2. The column index t is odd, and EXit = EXi,t+1 + 1. Hence EXj1t = EXj2,t+1 + 1.
Now, EXj2t must equal either EXj2,t+1 or EXj2,t+1 + 1, but neither of these values differs from
EXj1t by 2 or more, so it must be that j1 = j2.

Case 3. The column index t is even, and EXit = EXi,t+1−1. This case is similar to the preceding
one.

We see that any two neighboring entries in the range Xis, . . . , Xir must have column-successors on
the same row, so the lemma follows.

Proposition 4.1.3. If X has p3(r) and p4(r − 1), then it also has p4(r).

Proof. Let ir, i′r be column-consecutive positions in column r. Since i < i′ and p4(r − 1) holds,
Xi,r−1 ≥ Xi′,r−1. This in turn implies EXi,r−1 − EXi′,r−1 ≥ 2. By p3(r), we know

|EXir − EXi,r−1| ≤ 1
|EXi′r − EXi′,r−1| ≤ 1.

It follows from these inequalities that EXir − EXi′r ≥ 0. But no two entries in a single column of
EX can be closer than 2: we conclude that EXir−EXi′r ≥ 2. From this last inequality we conclude
that Xir −Xi′r ≥ 0; hence, column r is nonincreasing, and p4(r) holds.

Corollary 4.1.4. Suppose X has P1(r − 1), P2(r − 1), P3(r − 1), and P4(r − 1). If it does
not have P4(r), then it also does not have P3(r).

Proposition 4.1.5. Suppose X has P1(r − 1), P2(r − 1), P3(r − 1), and P4(r − 1). If it does
not have P3(r), then it satisfies some hypothesis in the left-hand column of Table 3.3.

Proof. We know that q5(X) > 0; find a row i such that q̃5;i0r(X) is maximal. We assume henceforth
that EXi0,r−1 > EXi0r; the argument would proceed similarly if the inequality were reversed. Let
i ≤ i0 be the index of the uppermost row whose entry in column r equals Xi0r. In other words, row
i has the property that Xjr = Xir implies j ≥ i. It is easy to check that this setup implies

EXi,r−1 − EXir ≥ EXi0,r−1 − EXi0r,

and by maximality, the preceeding line must actually be an equality. The remainder of the argument
is a boring and complicated case-by-case analysis. To assist the reader in staying awake while reading
it, we give here a road map of the breakdown into cases, although we do not yet define all the symbols
contained herein.

1. r is odd.

(a) Xi′,r−1 is lowerable.

(b) Xi′,r−1 is not lowerable.
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i. s = 0.
ii. s > 0.

A. s is even.
B. s = r − 2.
C. s is odd and less then r − 2.

2. r is even.

First, we consider the case where r is odd. Let i′ ≥ i be the last row such that the consecutive
rows i, i+ 1, . . . , i′ all agree in the first r columns.

If Xi′,r−1 is lowerable, we are done: Proposition 3.2.8 applies to rows i, . . . , i′, with s = r − 1.
(In the event that EXi,r−1 − EXir = 1, we meet the additional requirement that s be even.)

If Xi′,r−1 is not lowerable, let Xi′′,r−1 be its column-successor. Let s be such that rows i′ and
i′′ of X agree in columns s+ 1, s+ 2, . . . , r− 1. Using Lemma 3.2.5, we see that either s = 0, or Xis

(s > 0) is lowerable.
Suppose s = 0. If Xi′′r is empty, we can apply Proposition 3.2.9a and do move B on rows i′

and i′′. If Xi′′r is not empty, we must have Xi′′r ≥ Xir in order not to violate the maximality of
q̃5;ir(X); but on the other hand, we cannot have Xi′′r = Xir, since i′ is the last row to agree with
row i in each of the first r columns. Hence Xi′′r > Xi′r, and we can do move C by Proposition
3.2.9b.

On the other hand, if s > 0, we know by Lemma 3.2.5 that Xi′′s is still the column-successor of
Xi′s, and that EXi′s − EXi′′s = 3. Since Xi′′s is raisable, property P2(r − 1) tells us the first of
the following inequalities, from which we derive the latter ones:

EXi′′s ≥ EXi′′,r−1 − 1
EXi′′s + 3 ≥ EXi′′,r−1 + 2

EXi′s ≥ EXi′,r−1 (4.1)
EXi′s > EXi′r

Indeed, EXjs > EXjr for every j = i, . . . , i′. Now we can almost apply Proposition 3.2.8 to rows
i, . . . , i′ with our specified s and r. If EXi,r−1 −EXir ≥ 2, then EXis −EXir ≥ 2 as well, and the
proposition applies. But if that difference is only 1, we need to make sure that s is even. We shall
show instead that if s is odd, then EXis −EXir is necessarily at least 2. Observe that by property
P3(r − 1), we must have EXi′s = EXi′,s+1 + 1, and EXi′′s = EXi′′,s+1.

If s = r − 2, then we are done: since EXi′,r−1 − EXi′r ≥ 1 and EXi′s = EXi′,r−1 + 1, we
conclude EXi′s − EXi′r ≥ 2, and hence EXis − EXir ≥ 2, as desired.

If s < r − 2, then because Xi′′s is raisable, property P1(r − 1) tells us that EXi′′s ≥ EXi′′,r−2.
In turn, property P3(r − 1) tells us that EXi′′,r−2 is at least as large as EXi′′,r−1 = EXi′,r−1 − 2.
We compute:

EXi′′s ≥ EXi′,r−1 − 2
EXi′′s + 3 ≥ EXi′,r−1 + 1

EXi′s > EXi′,r−1

This last strict inequality implies that EXi′s − EXi′r ≥ 2, so once again, EXis − EXir ≥ 2, as
desired.

What happens if r is even? We can repeat the above arguments until the final few steps, where
we worried about the possibility that EXis − EXir = 1. But that worry is irrelevant when r is
even: now q̃5;ir > 0 means that EXi,r−1 − EXir ≥ 2, so inequality (4.1) implies directly that
EXis − EXir ≥ 2 as well.

Proposition 4.1.6. Suppose X has P1(r− 1) and P2(r− 1), as well as P3(r) and P4(r). If it
does not have P2(r), then it satisfies some hypothesis in the left-hand column of Table 3.3.
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Proof. We assume without loss of generality that there are some positions i′s, i′r in X such that
EXi′s − EXi′r ≥ 2, but such that EXi′s is lowerable. (The argument is similar if the inequality is
reversed and EXi′s is raisable.) Let i1, i2, . . . , im = i′ be a sequence of row indices that are column-
consecutive in column r, and such that Xi1r is raisable. Then Proposition 3.2.7 applies, and we can
do move A.

Proposition 4.1.7. Suppose X has P1(r − 1), as well as P2(r), P3(r), and P4(r). If it does
not have P1(r), then it satisfies some hypothesis in the left-hand column of Table 3.3.

Proof. The argument is identical to that in the proof of Proposition 4.1.6, except that in the first
sentence, the inequality is replaced by “EXi′s − EXi′r ≥ 1,” and in the last sentence, we apply
Proposition 3.2.6.

Let d be a partition of n, and τ a representation of Gd
red. We introduce the follow two new symbols:

D̃◦n = {X ∈ D̃n | X has P1(r), P2(r), P3(r), and P4(r) for all r}
D̃◦(d, τ) = D̃(d, τ) ∩ D̃◦n

Theorem 4.1.8. The image of α is contained in D̃◦n. If X ∈ D̃(d, τ), then α(X) ∈ D̃◦(d, τ).
Furthermore, ‖Eα(X)‖2 ≤ ‖EX‖2 for all X.

Proof. The map α is computed by repeatedly doing moves from Table 3.3, until none is possible.
Collecting the results expressed in Corollary 4.1.4 and Propositions 4.1.5, 4.1.6, and 4.1.7, we see
that a move is always possible for any diagram not lying in D̃◦n. Hence the image of α lies in D̃◦n.
Finally, recall the function q : D̃n → N

6 defined in the proof of Proposition 4.1.1. The last part of the
assertion is true because q(α(X)) ≤ q(X) for any X, and this implies that q1(α(X)) ≤ q1(X).

The size-reducing property of α means that if we start with a diagram X ∈ D̃(d, τ) such that
‖EX‖2 is minimal, then α(X) must also have minimal size. To say this symbolically, we introduce
the following notation:

D̃(d, τ)min = {X ∈ D̃(d, τ) | ‖EX‖2 is minimal among ‖EY ‖2 for Y ∈ D̃(d, τ)}
D̃◦(d, τ)min = D̃(d, τ)min ∩ D̃◦(d, τ)

Corollary 4.1.9. D̃◦(d, τ)min is nonempty, and α(D̃(d, τ)min) ⊆ D̃◦(d, τ)min. Furthermore, if
X ∈ D̃(d, τ)min, then Eα(X) and EX have the same integer entries.

Proof. The first statement follows immediately from the preceding theorem and the definitions of
D̃(d, τ)min and D̃◦(d, τ)min. For the second statement, if X ∈ D̃(d, τ)min, then ‖EαX‖2 = ‖EX‖2;
moreover, every intermediate diagram Y obtained in the process of computing α must also have
that ‖EY ‖2 = ‖EX‖2. Let us revisit Table 3.3. What moves can be made that do not decrease
the size of the diagram? Moves B, B−1, and C do not decrease size; furthermore, they operate by
rearranging entries in the diagram, without actually changing them. A and A−1 also preserve size
under certain circumstances. Specifically, if these moves are applied to only one row, say row i, with
|EXir − EXis| = 1, then they are well-behaved of order 1. Although A and A−1 nominally alter
entries in the diagram by ±1, the fact that |EXir − EXis| = 1 means that A or A−1 effectively
just exchanges entries EXir and EXis. Thus, any move which preserves the size of EX acts by
rearranging entries in the diagram without altering them. In other words, EαX has the same integer
entries as EX.

4.2 The Algorithm for β

In this section we present an algorithm for inverting α. We begin with a few basic constructions
dealing with finite collections of integers, in which a given integer is allowed to occur with multiplicity
greater than 1. Later on, we shall sometimes use these constructions where we take the collections
to be the coordinates of a weight of GL(n), and sometimes where we take them to be the entries of a
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diagram in D̃n. Henceforth, all collections of integers are assumed to be finite and to allow elements
with multiplicities greater than 1.

Definition 4.2.1. The length of a collection of integers is the number of distinct elements it
contains. This is to be distinguished from size, the total number of elements.

Definition 4.2.2. A collection of integers is called a clump if either of the following conditions
holds:

i. The collection has length 1.

ii. The collection has length greater than 1, and for each member of the collection, there is another
member differing from it by exactly 1.

Lemma 4.2.3. Any collection of integers can be written uniquely as a disjoint union of clumps
of maximal size.

The algorithm for computing β : Λ(G) → D̃n is given below. We start with some weight
σ ∈ Λ(G).

1. Let r = 1, and let σr be the collection of integers which are coordinates of σ. Write σr =
A1,l1 q · · · q A1,l, where the A1,i are clumps of maximal size. We are about to start building
the first column; below, “r” always refers to the column on which we are currently working.

2. Write down the distinct values of each clump in decreasing order. Form a set Zr of (distinct)
integers as follows: for each clump of odd length, we include in Zr the 1st, 3rd, 5th, etc.,
distinct values of the clump. For each clump of even length, similarly take the odd-index
distinct values if r is odd, but if r is even, take the 2nd, 4th, etc., values of each even-length
clump. (Another way to think of this is that we always take alternate values from each clump;
if r is odd, we must include the largest value in each clump, but if r is even, we must include
the smallest.)

3. Write down the elements of Zr vertically and in decreasing order. If r = 1, we are done—what
we have just written down will be the first column of the diagram. Otherwise, we need to
worry about what row each entry in the column belongs to. Place each element x of Zr such
that it is adjacent to a spot in column r− 1 containing either x or x+ (−1)r (this can always
be done uniquely).

4. Let σr+1 denote the collection obtained by removing the members of Zr from σr. If σr+1 is
empty, we are finished drawing the diagram; otherwise, partition σr+1 into disjoint maximal-
size clumps Ar+1,1 q · · · qAr+1,lr . Advance the value of r by 1, and go to step 2.

There is something to be proved to ensure that Step 3 makes sense: namely, that each element
of Zr can be placed in a unique position next to some entry in column r − 1 such that a certain
adjacency condition is met. To that end, we make some observations.

First, note that when σr is divided into maximal clumps, any two entries differing by only 0 or
1 must end up in the same clump. In other words, entries in different clumps differ by at least 2.
Since Zr is constructed by taking alternate entries in every clump, it follows that any two elements
of Zr must differ by at least 2.

Let x ∈ Zr, and suppose that we are working on Step 3. We are looking for an entry in the
preceding column whose value is either x or x+(−1)r. Since distinct entries in the preceding column
differ from one another by at least 2, we know that at most one of x and x+(−1)r can occur in that
column, and if one of them does occur, it occurs only once. In other words, if there is an appropriate
entry in the column r − 1 that meets our adjacency condition, it is unique.

Now we establish that either x or x+(−1)r actually occurs in the preceding column. Specifically,
we assume that x does not occur, and show that x+ (−1)r must occur. Let us rewind the algorithm
to the point where we were building column r − 1. There was some clump Ar−1,i to which our
element x belonged. Column r − 1 includes alternate entries from clump Ar−1,i, so if it does not
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contain x, it must contain one or both of x + 1 and x − 1. If both of these occur, we are finished:
one of them is x+ (−1)r.

But what if only one of x ± 1 occurs? Suppose that only x − 1 occurs. This can only happen
if Ar−1,i has no members equal to x + 1; since Ar−1,i is a clump, it must be that x is the largest
value occurring in Ar−1,i. In constructing Zr−1, we had not taken the largest (i.e first) value in
Ar−1,i, but we had taken the second value. This is only done when the clump has even length and
the column index is even. That is, r − 1 is even, so x + (−1)r = x − 1. Thus x + (−1)r occurs in
column r − 1.

A similar argument shows that if x+ 1 occurs in the preceding column, but x− 1 does not, then
r − 1 is odd, and again x+ (−1)r = x+ 1 occurs in column r − 1.

We have established that Step 3 of the algorithm for β makes sense. In the course of establishing
this, we observed that any two entries in a single column of the resulting diagram differ by at least
2. This property can be rephrased as the following statement:

Proposition 4.2.4. For any σ ∈ Λ(G), the diagram β(σ) lies in E(D̃n).
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CHAPTER 5

Proof of the Main Theorem

In this chapter, we establish Theorem 3. In the first section, we show that β gives a bijection
between dominant weights of GL(n,C) and a certain set of weight diagrams. At that stage, we are
only a stone’s throw away from having a bijection between Λ+(G) and the set of pairs {(d, τ)}.
However, it still takes some effort to show that the bijection we are computing coincides with the
map γ as defined in Chapter 2. The second section is devoted to this latter goal. The map α plays
an important role in this section. By the end the chapter, we shall have an explicit description of
how to compute γ and its inverse using our algorithms.

5.1 Establishing the Bijection

Our goal in this section is to show that E−1 ◦ β gives a bijection between Λ+(G) and D̃◦n.

Remark 5.1.1. Note that because adjacent entries in a given row of β(σ) differ by at most 1,
those entries must have belonged to the same clump when we first divided σ into clumps. In other
words, clumps of σ are unions of rows in β(σ). Moreover, the rows that constitute a given clump of
σ must be consecutive.

Proposition 5.1.2. For any σ ∈ Λ+(G), E−1β(σ) ∈ D̃◦n.

Proof. Let X = E−1β(σ), so that EX = β(σ). P3(r) holds for all r because this condition about
differences of adjacent entries is precisely that imposed in Step 3 of the algorithm. P4(r) holds for
all r because in Step 3 the columns of EX were constructed to be in decreasing order.

P1(r) and P2(r) are both consequences of Remark 5.1.1. Suppose, for instance, that in violation
of P1(r), we have s < r, s and r both odd, EXis < EXir, and Xis raisable. If Xi′s is the column-
predecessor of Xis, then Xi′s ≥ Xis + 1, so EXi′s ≥ EXis + 3. That large a difference between
column-consecutive entries means that EXi′s and EXis must have come from different clumps of
σs. We finished taking values from, say, clump As,j at row i′, and EXis contains the first value
taken from As,j+1. Since s is odd, EXis should be the largest value in As,j+1, but on the other
hand, EXir is a value from the same clump, but it is larger than EXis, so we have a contradiction.

A similar argument establishes that P1(r) holds if r is even. The same type of argument proves
that P2(r) holds as well, but the stronger inequality in that property means that we do not need to
refer to the parity of s in the course of proving it.

Proposition 5.1.3. For any X ∈ D̃◦n, if we regard πEX as a weight of GL(n), then β(πEX) =
EX.

Proof. What we have to prove here is that if we forget the diagram shape of EX and regard it just
as a collection of integers, then the algorithm for β recovers the original diagram. We shall show
that β rebuilds the first column of EX correctly; the same argument can be iterated to show that
successive columns of EX are recovered as well.

Let σ = πEX. Since X has P3(r) for all r, adjacent entries of EX must end up in the same clump
of σ. Indeed, we have the Remark-5.1.1-like statement that clumps of σ are unions of consecutive
rows of EX. We need to prove that the first column of EX contains the odd-index values from
every clump—that will establish that EX and β(σ) have the same first column. To this end, we
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restrict our attention to a sequence of consecutive rows i0, i0 + 1, . . . , i0 + l whose entries constitute
one clump of σ.

First, we show that EXi0+j,1 = EXi0+j+1,1 + 2 for each j. Of course, EXi0+j,1 − EXi0+j+1,1

is at least 2, but if it were larger, that would mean Xi0+j,1 is lowerable, and Xi0+j+1,1 is raisable.
Property P2(r) implies that all successive entries in row i0 + j of EX must differ from EXi0+j+1,1

by at least 2, and all successive entries of row i0 + j+ 1 must differ from EXi0+j,1 by at least 2. But
if these conditions held, the entries of rows i0 + j and i0 + j+ 1 could not belong to the same clump.
Therefore EXi0+j,1 = EXi0+j+1,1 + 2. It follows that the sequence EXi0,1, EXi0+1,1, . . . , EXi0+l,1

is, in fact, a sequence of alternate values from the clump under examination.
Now, we show that the clump does not contain EXi0,1 + 2 as a value. Suppose this value occurs

in row i0 + j. It is larger than EXi0+j,1, and since adjacent entries differ by at most 1, the value
EXi0,1 must occur somewhere in row i0 + j. Then Property P2(r) tells us that EXi0,1 + 2 must
occur in row i0 + j − 1. We iterate this argument and find that EXi0,1 + 2 occurs in each of rows
i0 + j, i0 + j − 1, . . . , i0, i0 − 1. But that would imply that the entries of rows i0 − 1 and i0 belong
to the same clump, a contradiction.

A similar argument shows that EXi0+l,1 − 2 does not occur in the clump either. Thus, the
sequence of values EXi0,1, . . . , EXi0+l,1 is a maximal set of alternate values from the clump. We
just need to show that these are the odd-index values; or, that EXi0,1 is the largest value in the
clump. We know that EXi0,1 +2 is not a value in the clump, so we just need to check that EXi0,1 +1
is not either. If it were, the argument used in the preceeding paragraph would show that it would
occur in row i0. Let r be the leftmost column such that EXi0,r = EXi0,1 + 1. Since adjacent entries
differ by at most 1, it must be that EXi0,r = EXi0,r−1 + 1. P3(r) then tells us that r must be
odd. Now we apply P1(r) to columns 1 and r and conclude that EXi0,1 is not raisable. But if
EXi0−1,1 = EXi0,1 + 2, and the value EXi0,1 + 1 occurs in row i0, it would have to be that the
entries of rows i0 − 1 and i0 belong to the same clump. Therefore, EXi0,1 is actually the largest
value in its clump, and the sequence EXi0,1, . . . , EXi0+l,1 is the sequence of odd-index values from
this clump.

We have shown that the first column constructed by β is the same as the first column of EX. The
same argument (with appropriate modifications for even-numbered columns) shows that, in general,
Zr as constructed by β in Step 2 is the set of entries in column r of EX. The one remaining detail
to check is that the positioning of entries done in Step 3 is the same as the original positioning in
EX. The algorithm for β does this positioning so as to satisfy P3(r); and following the definition of
β, we argued that this positioning can be done uniquely. Since EX satisfies P3(r), the positioning
found in EX must be that produced by the algorithm.

Thus, β(πEX) = EX.

We combine the preceeding two propositions into the following result:

Theorem 5.1.4. β : Λ+(G)→ E(D̃◦n) is a bijection, and its inverse is given by π.

Proof. We just saw that β(πEX) = EX for X ∈ D̃◦n. And it is obvious that πβ(σ) = σ, since β
builds a diagram whose entries are the coordinates of a given weight, and π just forgets the diagram
shape.

One restatement of this result will be particularly useful to us:

Corollary 5.1.5. Elements of E(D̃◦n) are uniquely determined by their entries. In particular,
for each λ ∈ Dn, there is at most one X ∈ D̃◦n such that π(EX) = Eλ.

5.2 Computing γ for GL(n,C)

Having gotten the machinery of weight diagrams and the maps α and β under our belts, let
us return to the task of computing γ(d, τ). Recall the definitions of Θ(η) and ξ(η) from long ago,
and the idea expressed in Claim 2.3.1. We would like to find an (η,Wη) whose restriction to Gd is
isomorphic to τ and which minimizes ‖ξ(η)‖2. Recall our abuse of notation in which we write the
same symbol for a given irreducible representation of Gd

red and its highest weight.
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It was suggested near the end of Chapter 2 that we might be able to produce the desired virtual
representation (η,Wη) by the following strategy. We start with an irreducible Pd-representation
(ηλ,Wλ) such that λ|Gd

red
= τ and such that ‖Eλ‖2 is minimized: then, Vτ will be a summand of

Wλ|Gd
red

. We then subtract off “smaller” Pd-representations as necessary until we are left with a
virtual representation with exactly the desired restriction to Gd

red.
We know how to find such a λ, using weight diagrams; but to make the above suggestion rigorous,

we must acquire some understanding of the word “smaller.”
Let us begin not with the parabolics, but with the isotropy groups Gd

red. We define a partial
order on all of

∐
|d|=n Ĝ

d as follows. If τ1 ∈ Ĝd1 and τ2 ∈ Ĝd2 , then we write τ1 ≺ τ2 if either of
the following two conditions holds:

(a) d1 6= d2, and Od1 ⊆ Od2 .

(b) d1 = d2, and there is a sequence of irreducible representations of Gd1
red

τ1 = v0, v1, . . . , vm = τ2

such that for each vi, there is some Xi ∈ D̃(d1, vi)min such that Vvi−1 occurs with nonzero
multiplicity in WπXi |Gd1

red
.

The motivation for the second condition is that for representations of a given Gd, the assertion
τ1 ≺ τ2 ought to mean that τ1 may occur in WπX2 |Gd

red
for X2 ∈ D̃(d, τ2)min, but τ2 can never occur

in any WπX1 |Gd
red

for X1 ∈ D̃(d, τ1)min. The condition is stated in terms of sequences to ensure that
the relation is transitive.

Of course, it is not evident that “≺” is a partial order: it is not clear that it is not possible to
have both τ1 ≺ τ2 and τ2 ≺ τ1. We establish this below, along with a few other useful facts. WG

denotes the Weyl group of G throughout.

Lemma 5.2.1. If X1 ∈ D̃(d, τ1)min and X2 ∈ D̃(d, τ2)min, then πEX1 and πEX2 (regarded as
weights of the full group G) are not WG-conjugate.

Proof. We know that α(X1) ∈ D̃◦(d, τ1)min and α(X2) ∈ D̃◦(d, τ2)min. In addition, Corollary
4.1.9 tells us that Eα(X1) has the same integer entries as EX1, and likewise for X2. If πEX1

and πEX2 were conjugate under WG, then πEα(X1) and πEα(X2) would be as well. In other
words, Eα(X1) and Eα(X2) would be distinct diagrams in E(D̃◦n) that have the same entries. But
diagrams in E(D̃◦n) are determined by their entries, so it must be that πEX1 and πEX2 are not
WG-conjugate.

Lemma 5.2.2. If τ1 ≺ τ2, then τ2 6≺ τ1. That is, “≺” defines a partial order on
∐
|d|=n Ĝ

d.

Proof. The statement is obviously true if τ1 and τ2 are associated with different nilpotent orbits, so
we assume that are both elements of the same Ĝd. Suppose that τ1 ≺ τ2 and τ2 ≺ τ1; let

τ1 = v0, v1, . . . , vm = τ2

be a sequence of irreducible Gd
red-representations, and

X1, . . . , Xm

a sequence of diagrams such that Xi ∈ D(d, vi)min and vi−1 occurs in WπXi |Gd
red

. Conversely, let

τ2 = v′0, v
′
1, . . . , v

′
k = τ1

and
X ′1, . . . , X

′
k

be additional sequences of irreducibleGd
red-representations and diagrams satisfying the corresponding

conditions for the relation τ2 ≺ τ1.
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Now, the fact that vi−1 occurs in the restriction of WπXi implies that among the weights of
WπXi is a weight µi−1 whose restriction to Gd

red (relative to the particular imbedding Gd
red ↪→ Ld

corresponding to the shape of Xi) is the weight vi−1. Now, extremal weights of a representation
have maximal norm among weights of the representation; moreover, this maximality is preserved by
E. Thus

‖Eµi−1‖2 ≤ ‖EXi‖2

for each i. Equality holds here if and only if µi−1 is an extremal weight of WπXi . We can write each
µi as a diagram Yi ∈ D̃(d, vi) of the same shape as Xi+1.

Since each Xi belongs to D̃(d, vi)min, and each Yi to D̃(d, vi), it follows that

‖EXi‖2 ≤ ‖Eµi‖2

for each i. Stringing all these inequalities together, we get

‖Eµ0‖2 ≤ ‖EX1‖2 ≤ ‖Eµ1‖2 ≤ · · · ≤ ‖Eµm−1‖2 ≤ ‖EXm‖2.

Similarly, let µ′i−1 be a weight of WπX′i
whose restriction to Gd

red is v′i−1; write each µ′i as a diagram
Y ′i ∈ D̃(d, v′i) of the same shape as X ′i+1. We obtain another chain of inequalities:

‖Eµ′0‖2 ≤ ‖EX ′1‖2 ≤ ‖Eµ′1‖2 ≤ · · · ≤ ‖Eµ′k−1‖2 ≤ ‖EX ′k‖2.

But now we observe that

‖EXm‖2 ≤ ‖Eµ′0‖2 = ‖EY ′0‖2 and ‖EX ′k‖2 ≤ ‖Eµ0‖2 = ‖EY0‖2

because

X ′k ∈ D̃(d, τ1)min Xm ∈ D̃(d, τ2)min

Y0 ∈ D̃(d, τ1) Y ′0 ∈ D̃(d, τ2).

This means that our two long chains of inequalities above are linked at the ends, and every inequality
therein is an equality.

In particular, we find that ‖Eµi−1‖2 = ‖EXi‖2. Recall that this implies that µi−1 is an extremal
weight of WπXi ; i.e., that µi−1 is conjugate to πXi under the Weyl group of Ld, and hence under
WG. It follows that πEYi−1 and πEXi are also conjugate under Wd and WG. But on the other
hand, we also find that ‖EXi−1‖2 = ‖Eµi−1‖2, so Yi−1 ∈ D̃(d, vi−1)min. According to the previous
lemma, this means that πEYi−1 cannot be WG-conjugate to πEXi, so we have a contradiction.
Thus, it cannot be that both τ1 ≺ τ2 and τ2 ≺ τ1 hold.

Lemma 5.2.3. Suppose τ1, τ2 ∈ Ĝd
red. If τ1 ≺ τ2, and if X1 ∈ D̃(d, τ1)min and X2 ∈ D̃(d, τ2)min,

then ‖EX1‖2 < ‖EX2‖2.

Proof. The inequalities derived in the preceding proof establish that ‖EX1‖2 ≤ ‖EX2‖2; we just
need to show that the two cannot be equal. Let ν1 be a weight occurring in the representation WπX2

whose restriction to Gd
red is τ1; write ν1 as a diagram Y1 ∈ D̃(d, τ1) of the same shape as X2. We

have
‖EX1‖2 ≤ ‖EY1‖2 ≤ ‖EX2‖2.

If the left-most and right-most quantities are equal, then ‖Eν1‖2 must be equal to the other two.
In particular, Y1 ∈ D̃(d, τ1)min. But ‖EY1‖2 = ‖EX2‖2 implies that ν1 is an extremal weight in the
representation WπX2 ; that is, ν1 and πX2 are conjugate under Wd and hence under WG. But this
is a contradiction, since Y1 ∈ D̃(d, τ1)min and X2 ∈ D̃(d, τ2)min.

Lemma 5.2.4. If X ∈ D̃◦(d, τ)min, then 〈Vτ ,WπX |Gd
red
〉 = 1.
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Proof. Since τ is the restriction of an extremal weight of WπX , it is clear that Vτ occurs at least
once in the restriction of WπX to Gd

red. If it were to occur more than once, we would be able to
find some other weight µ of WπX whose restriction to Gd

red is also τ . Since X ∈ D̃(d, τ)min, we
know that ‖Eµ‖2 ≥ ‖πEX‖2. But the extremal weights are of maximal size among the weights of
a representation, so such a µ would also have to be an extremal weight. That is, µ would have be
to conjugate to πX under Wd.

Now, κ(X) = τ of course, but let us, without loss of generality, make the stronger assumption
that the positive root system of Gd

red has been chosen such that κ̃(X) = τ . A weight µ as described
above would correspond to a diagram Y of the same shape as X (recall that the shape of X fixes an
imbedding Gd

red ↪→ Ld), which satisfies κ̃(Y ) = τ . Since µ and πX are Wd-conjugate, the entries of
Y are just those of X, suitably permuted by Wd. Note that κ̃(Y ) = τ is a stronger statement than
Y ∈ D̃(d, τ).

Now, Wd acts on diagrams of shape-class d by permuting the entries within each column but
acting on each column separately. Suppose i is the first (uppermost) row in which X and X ′ differ.
That means that some entries in row i of X have been replaced by other entries farther down in
the same column to obtain row i of X ′. But because X ∈ D̃◦(d, τ), we know that its columns are
nonincreasing. Thus Yir ≤ Xir for each r; moreover, the inequality is strict for some r since X and
X ′ differ in row i. Hence the sum of row i of X1 is strictly less than the sum of row i of X, so it
cannot be that κ̃(Y ) = κ̃(X). This contradicts the assumption that κ̃(Y ) = τ , so there can be no
second weight λ′ of Wλ whose restriction to Gd

red is τ .

Now we are ready to achieve one of our goals: we show how to compute γ(d, τ).

Proposition 5.2.5. (a) If X0, X
′
0 ∈ D̃(d, τ)min, then the weights πEX0 and πEX ′0, regarded

as weights of G, are WG-conjugate.

(b) D̃◦(d, τ)min contains exactly one element for each d and τ . If Z(d, τ) is this element, then
there is a virtual representation (η,Wη) of Ld such that η|Gd

red
' τ , and

ξ(η) = π(EZ(d, τ)) = γ(d, τ).

Conversely, Z(d, τ) = E−1β(γ(d, τ)).

Proof. We prove the two parts of this proposition together, by induction on τ with respect to ≺.
Let us begin at the zero orbit, given by d = [1n]. Now, G[1n]

red = L[1n] = G. Any (τ, Vτ ) ∈ Ĝ[1n]
red is

itself an irreducible representation of L[1n] = G. The set πE(D̃([1n], τ)) is just {w(Eτ) | w ∈ WG},
so part (a) holds. Since any element of E(D̃◦([1n], τ)) is determined by its entries, and since the
entries of any such element must be the coordinates of Eτ , each D̃◦([1n], τ) contains exactly one
element. This element is Z([1n], τ) = E−1β(Eτ). Now, since there are no smaller orbits than the
zero orbit, Propositions 2.1.7 and 2.2.4 tell us that

Θ(τ) ' N([1n], τ) '
⊕
w∈WG

(−1)−w IndGT CEwτ .

Indeed, Vτ is itself the desired virtual representation of L[1n]: clearly τ |
G

[1n]
red

= τ , and ξ(τ) =
π(EZ([1n], τ)). We see by inspection that the largest weight occurring on the right in this equation
is Eτ , which is precisely πE applied to the unique element E−1β(Eτ) of D̃◦([1n], τ). Because there
are no smaller orbits, γ([1n], τ) is just this largest weight. This establishes part (b).

Now let us move on to a larger orbit, say Od. Assume that we have established the result for
all smaller orbits contained in Od. We argue by induction on representations τ of Gd with respect
to ≺. (The following argument is the general inductive step, in which it is assumed that the result
is established for all representations of Gd that are smaller than τ with respect to ≺. In particular,
the same argument also proves the result for the base case in which τ is minimal among irreducible
Gd

red-representations with respect to ≺.)
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Let X,X ′ ∈ D̃(d, τ)min. Suppose that

ηπX |Gd
red
' τ ⊕

⊕
ciτi and ηπX′ |Gd

red
' τ ⊕

⊕
c′iτ
′
i .

All the τi’s and τ ′i ’s are smaller than τ with respect to ≺. (The preceding lemma tells us that
Vτ occurs with multiplicity 1 in both of these modules.) Now, consider the virtual representation
WπX −WπX′ . The restriction of this representation to Gd

red consists entirely of representations with
highest weight smaller than τ . Let us compute Θ(ηπX − ηπX′) by Propositions 2.1.7 and 2.2.4.∑
w∈Wd

(−1)−w
(
IndGT CEw(πX) − IndGT CEw(πX′)

)
=
∑

ciN(d, τi)−
∑

c′iN(d, τ ′i) +
∑

djN(d′′j , τ
′′
j )

Here the d′′j ’s are such that each Od′′j
is contained in the boundary of Od. Note that N(d, τ) does

not appear on the right-hand side. Suppose that πX and πX ′ are not WG-conjugate. Then there are
two weights of maximal size on the left-hand side of this equation, E(πX) and E(πX ′). What are
the maximal weights on the right-hand side? The largest weights occurring in the various N(d, τi)’s,
N(d, τ ′i)’s, and N(d′′j , τ

′′
j )’s are all distinct, since (by the inductive hypothesis) distinct diagrams in

D̃◦n are recovered by applying E−1β to these largest weights. So a largest weight on the right-hand
side must be one of the γ(d, τi)’s, γ(d, τ ′i)’s or γ(d′′j , τ

′′
j )’s. It follows that one of these values of

γ must be E(πX) or E(πX ′). But that is impossible, because E−1β(E(πX)) and E−1β(E(πX ′))
are both diagrams in D̃◦(d, τ), but E−1β applied to some γ(d, τi), γ(d, τ ′i), or γ(d′′j , τ

′′
j ) should

yield a diagram in D̃◦(d, τi), D̃◦(d, τ ′i), or D̃◦(d′′j , τ
′′
j ) respectively. So πEX and πEX ′ must be

WG-conjugate: part (a) holds.
Now, it is obvious that E(D̃◦(d, τ)min) contains exactly one element, since diagrams in E(D̃◦n)

are determined by their entries, and all diagrams in E(D̃(d, τ)min) have the same entries. It then
follows that D̃◦(d, τ) contains exactly one diagram as well, which we denote by Z(d, τ). How do we
construct the desired virtual representation of Ld? We begin by comparing again two expressions
for Θ(ηπX): ∑

w∈Wd

(−1)−w IndGT CEw(πX) = N(d, τ) +
∑

ciN(d, τi) +
∑

ejN(d′′j , τ
′′
j ).

As before, the d′′j ’s correspond to smaller orbits. By the inductive hypothesis, we have for each τi a
virtual representation (ηi,Wi) such that ηi|Gd

red
' τi; moreover, by Proposition 2.2.4, we can rewrite

N(d, τi) as a sum of Θ(ηi) and finitely many N(d′′j , τ
′′
j )’s from smaller orbits. So we can rewrite the

above equation as∑
w∈Wd

(−1)−w IndGT CEw(πZ(d,τ)) −
∑

ciΘ(ηi) = N(d, τ) +
∑

e′jN(d′′j , τ
′′
j ). (5.1)

Lemma 5.2.3 implies that ‖ξ(ηi)‖2 < ‖π(EZ(d, τ))‖2, so the largest weight on the left-hand side of
this equation is π(EZ(d, τ)). Introduce the virtual representation η0 = ηπ(EZ(d,τ)) −

∑
ciηi; then,

the left-hand side of the above equation is just Θ(η0), and ξ(η) = π(EZ(d, τ)).

It remains to establish that γ(d, τ) = π(EZ(d, τ)). If this equation did not hold, we would have
‖γ(d, τ)‖2 < ‖π(EZ(d, τ)‖2. Moreover, there would be some expression of the form

∑
e′′jN(d′′j , τ

′′
j ),

supported entirely on smaller orbits, that we could add to both sides of (5.1) to achieve the minimum
largest weight γ(d, τ). Since this is smaller than π(EZ(d, τ)), it must be that the largest weight of∑
e′′jN(d′j , τ

′′
j ) is also π(EZ(d, τ)), but with coefficient negative of that which it has in (5.1). On

the other hand, we know by induction that the largest weight occurring in
∑
e′′jN(d′j , τ

′′
j ) is some

γ(d′′, τ ′′j ) = π(EZ(d′′, τ ′′j )). But no π(EZ(d′′, τ ′′j )) can be equal to π(EZ(d, τ)), since elements of
D̃n are determined by their entries. In other words, there is no way to make the largest weight
occurring in (5.1) smaller by adding or subtracting N(d′′j , τ

′′
j )’s from smaller orbits. We conclude

that γ(d, τ) = π(EZ(d, τ)).
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Theorem 5.2.6. γ : {(d, τ)} → Λ+(G) is a bijection.

Proof. In the notation of the preceding proposition, we have γ(d, τ) = π(EZ(d, τ)). The elements
Z(d, τ) ∈ D̃◦(d, τ)min are all distinct, so γ is injective.

Now, let λ be a dominant weight of G. Construct the diagram X = E−1β(λ). Suppose
X ∈ D̃(d, τ); then, consider the Ld-representation (ηπX ,WπX). If this representation is such that
ηπX |Gd

red
'
∑
ciτi, then it follows that

Θ(ηπX) '
∑

ciΘ(ηπ(EZ(d,τi))).

Write both sides of this equation in the form
∑
mσ IndGT Cσ; then the largest weight occurring on

the left-hand side is π(EX), while the largest on the right-hand side is some π(EZ(d, τi)). Thus
π(EX) = π(EZ(d, τi)) for some i; and λ = γ(d, τi). Thus, γ is surjective.

Corollary 5.2.7. D̃◦(d, τ) = D̃◦(d, τ)min for each d and τ . Moreover, for any X ∈ D̃(d, τ),
α(X) is the unique element of D̃◦(d, τ).

Proof. Again, let Z(d, τ) denote the unique element of D̃◦(d, τ)min. We know that γ(d, τ) =
πEZ(d, τ). We just learned that γ is surjective, but we showed after constructing β that πE
gives a bijection between D̃◦n and Λ+(G). So D̃◦(d, τ) cannot contain any additional elements be-
yond Z(d, τ). The latter half of the corollary is immediate, since for any X ∈ D̃(d, τ), we have
α(X) ∈ D̃◦(d, τ).

This corollary gives us a concrete way to compute γ: given (d, τ), draw any weight diagram
X of shape-class d such that κ(X) = τ ; for instance, the diagram whose first column contains
the coordinates of τ and whose later columns are all zero. Then compute α(X) by following the
algorithm. By the preceding corollary, α(X) will be the unique element of D̃◦(d, τ). Then take
E(α(X)), and regard its entries as the coordinates of a dominant weight of G. The weight thus
obtained is γ(d, τ).

We can compute γ−1 algorithmically as well. For λ ∈ Λ+(G), the above results imply the
following formula:

γ−1(λ) = (shape-class of E−1(βλ), κ(E−1(βλ))).

Thus, we have the desired explicit description of the relationship between the bases of Theorems 1
and 2 for the groups GL(n,C).
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CHAPTER 6

Partial Results for the Symplectic Group

In this chapter, we investigate the possibility of developing an analogue of the preceding work for the
group G = Sp(2n,C). All the algebraic development in Chapter 2 is still valid in this setting, but in
the intervening chapters we made a particular choice of parabolic in the case of GL(n,C) in order
to obtain the simplifying relation ud = vd. The parabolic in question was the one with respect to
which Od was Richardson. Not every orbit in Sp(2n,C) is Richardson, so we cannot hope to effect
the same simplification in this setting. Instead, we stick to using the Jacobson-Morozov parabolic.
Then, when we try to apply the formula in Proposition 2.2.4, we will not be able to ignore ud/vd;
rather, we will give an explicit description of this space in the language of weight diagrams, and
make some guesses about what part of it should be added.

We are introducing a new kind of weight diagram in this chapter, but we will have occasion to
refer to the kind used in the context of GL(n,C). When ambiguity might result, the latter will be
called weight diagrams of type A.

6.1 Weight Diagrams

We begin by collecting some basic facts about nilpotent orbits in the symplectic group, as found
in, say, [7]. Nilpotent orbits for Sp(2n,C) are indexed by partitions of 2n in which odd parts occur
with even multiplicity: such a partition will be called a C-partition. Let d = [ka1

1 , . . . , kall ] be a
C-partition, and let Od be the nilpotent orbit corresponding to it. Let Gd be the isotropy group of
this orbit, and let Gd

red denote its reductive part, as usual. We have

Gd
red '

∏
{i|ki odd}

Sp(ai,C)×
∏

{i|ki even}

O(ai,C).

Let Pd denote the Jacobson-Morozov parabolic subgroup for this orbit, and let LdUd be the Levi
decomposition thereof. Then Ld is given by

Ld = Sp

( ∑
{i|ki odd}

ai

)
×
∏
p≥2

GL

( ∑
{i|ki ≡ p(mod 2) and ki ≥ p}

ai

)
.

We seek to mimic the GL(n,C) development, but we face an obstacle at the very first step.
Weights for Sp(2n,C) cannot possibly be described by filling in the boxes of a diagram whose shape-
class is a C-partition, since the latter has 2n boxes, but Sp(2n,C) only has rank n. We instead take
inspiration from the work of Garfinkle and others on “domino tableaux,” and introduce the idea of
a weight diagram whose constituents are dominoes rather than square boxes.

Definition 6.1.1. Consider the set of all left-justified pictures made up of 1×2 and 2×1 blocks
(called horizontal and vertical dominoes, respectively), each of which contains an integer entry. The
shape-class of such a diagram is the partition whose parts are the lengths of the rows of the diagram.
(The length of a row is the number of square boxes the row would contain if every domino were
replaced by two square boxes.) Such a diagram is called a weight diagram of type C if its shape-class
is a C-partition.
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We need a notation to refer to entries in a weight diagram of type C. We retain the type-A
coordinates arising from counting square blocks, and we introduce the following conventions: A
horizontal domino entry is referred to by the coordinates of its right-hand square, and a vertical
domino is referred to by the coordinates of its upper square.

Now, C-partitions are such that rows of odd length come in pairs. We can manage, therefore, to
use very few vertical dominoes in the picture: rows of even length can obviously be covered entirely
by horizontal dominoes, and for pairs of rows of odd length, we can put one vertical domino at the
left-hand edge of the diagram and fill out the rest with horizontal ones, as illustrated below.

↓ ↓

The reason for wanting to have nearly all the dominoes be horizontal has to do with how one
restricts weights from Ld to Gd

red: we shall return to this shortly.

Definition 6.1.2. A weight diagram of type C is said to be in standard form if vertical dominoes
only meet rows of odd length and only occur along the left-hand edge of the diagram.

Remark 6.1.3. If X is a weight diagram in standard form, there is an entry at Xir if and only
if r has the same parity as the length of row i.

In the case of GL(n,C), the restriction of weights was accomplished by summing up the rows
of the diagram; but in Sp(2n,C), the rank of Gd

red is roughly half the number of rows. In fact,
we shall need a designated grouping of (almost) all rows of a given length into ordered pairs, with
each pair contributing one coordinate to the weight of Gd

red. In a weight diagram in standard form,
odd-length rows come with an a priori such pairing: each vertical domino determines an ordered
pair of odd-length rows.

Definition 6.1.4. A weight diagram of type C is said to be fully equipped if it is in standard
form, and if there is given a grouping of all the rows of the rows of the diagram into ordered pairs
and singletons such that

(a) Both members of a given pair are rows of the same length.

(b) Each odd-length row is paired with the row with which it shares a vertical domino.

(c) There is at most one singleton row of any given even row length, and there are no singleton
rows of odd length.

The set of all fully equipped weight diagrams of type C with a total of n domino entries is denoted
D̃(Cn). The set of all such weight diagrams of shape-class d is denoted D̃(d;Cn). In each ordered pair
of rows, the first member will be called the dorsal member, and the second one ventral. Occasionally,
singleton rows may be referred to as dorsal rows, although they lack ventral partners.

All weight diagrams of type C will be henceforth assumed to be fully equipped unless explicitly
stated otherwise, although the pairing of rows may not always be explicitly specified. Typically,
where confusion would not result, “D̃(Cn)” will be abbreviated to “D̃n,” and “D̃(d;Cn)” to “D̃(d).”

Thus, the partition [6, 52, 2, 12] may give rise to a diagram of the following shape:

6.2 Extracting Weights from Weight Diagrams

Now, we turn our attention to getting weights of Ld and Gd
red from a weight diagram. As with

GL(n,C), the various factors of this Levi subgroup correspond to columns of a weight diagram. The
way to obtain a weight of Ld from a weight diagram filled with integer entries is as follows: the
entries in vertical dominoes constitute the coordinates of the weight of the Sp(·) factor, and the
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entries in all the horizontal dominoes whose right half lies in column r constitute the coordinates of
the weight of GL(

∑
{i|ki ≡ r(mod 2) and ki ≥ r} ai). For example, a weight of Ld is obtained from the

following diagram as shown.

7
2 3
1 4

−6 −2 −1
8

5

7→ (7, 5)︸ ︷︷ ︸
Sp(2)

, (−6, 8)︸ ︷︷ ︸
GL(2)

, (2, 1)︸ ︷︷ ︸
GL(2)

, (−2)︸︷︷︸
GL(1)

, (3, 4)︸ ︷︷ ︸
GL(2)

, (−1)︸︷︷︸
GL(1)

By analogy with the type-A case, we write D(d;Cn) for the collection of weights of Ld, and

D(Cn) =
∐
|d|=2n

d a C-partition

D(d;Cn)

for their disjoint union. We give the name π : D̃(Cn) → D(Cn) to the map defined by the above
procedure for reading off an Ld-weight from a weight diagram.

Next we discuss how to find the restriction of an Ld-weight to Gd
red, a task that is considerably

more complicated than in the GL(n,C) case. In addition to the aforementioned fact that the rank
of Gd

red is only about half the number of rows, there is the problem that some of the Gd
red groups are

disconnected (they may include orthogonal groups as factors), so their irreducible representations
are not quite in bijection with the set of dominant weights.

Because of that last concern, we eschew our GL(n,C)-habit of confusing notation for irreducible
representations and their highest weights. Indeed, we ought to have an established description of
irreducible representations of Gd

red before we can hope to say how to restrict weights of Ld to it,
so before proceeding, let us briefly recall the representation theory of the orthogonal group. If k
is odd, then O(k) is just isomorphic to Z/2Z × SO(k), so an irreducible representation of O(k) is
specified by giving the highest weight of the SO(k) action, along with one of “+” or “−” to indicate
whether the Z/2Z factor acts trivially or nontrivially. (We shall use “+” to denote the trivial
representation of Z/2Z.) On the other hand, if k is even, let (p1, . . . , pk/2) be a dominant weight of
SO(k). If the last coordinate pk/2 is nonzero, then there is a unique irreducible O(k)-representation
whose restriction to SO(k) contains the irreducible representation of the given highest weight as a
constituent. But if pk/2 = 0, there are two possible ways of extending the given SO(k)-representation
to an O(k)-representation: we must specify one of the signs ± to indicate how the element

J =

 1

. . .
1
−1

 ∈ O(k)

acts on the highest weight space.
Suppose, now, that our partition d has an even part ki with multiplicity ai. Then, Gd

red contains
a factor O(ai), which sits diagonally inside a product of ki different GL(·)’s. The size of those GL(·)’s
does not matter per se: we can try to understand how to restrict weights by looking at a particular
example, the standard inclusion O(ai) ↪→ GL(ai). On the level of Lie algebras, the inclusion of tori
looks like 

h1
−h1

. . .
hai/2

−hai/2

 or


h1
−h1

. . .
h(ai−1)/2

−h(ai−1)/2

0

 ,

depending on the parity of ai. This is where the pairing of rows in the diagram comes into play: if
(i1, i2) is an ordered pair of rows of the same length ki, we associate them with some pair of coor-
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dinates hi, −hi on the imbedded toral subalgebra. Note that only even-numbered columns appear
when we name the horizontal dominoes that occur in these two rows. Then, the i-th coordinate of
the restricted weight is given by the sum of the entries in row i1, minus the sum of the entries in
row i2:

ki/2∑
r=1

Xi1,2r −
ki/2∑
r=1

Xi2,2r.

What about a possible singleton row of length ki? If there is such a singleton row, it would
correspond to the “0” coordinate at the lower right-hand corner for odd-size orthogonal groups, as
shown above. This means that the singleton row has no bearing on the restriction of the weight to
the SO(·) part, but it does bear some relation to the action of the nonidentity component of O(ai).

Rather than treat this case specifically, we instead look at how to determine the action of the
nonidentity component in general. If ai is even, let (i′0, i0) be the ordered pair of rows corresponding
to the (ai/2)-th (i.e., the last) coordinate of an O(ai)-weight; if ai is odd, let i0 be the singleton
row. In either case, let

p =
ki∑
r=1

Xi0r.

Now, the matrix J defined above acts by (−1)p. Thus, whenever a plus or minus sign needs to be
specified in addition to a highest weight to fully describe the action of O(ai), it is obtained as{

+ if p ≡ 0 (mod 2);
− if p ≡ 1 (mod 2).

We still need to describe the restriction of weights to Sp(·) factors of Gd
red. Since the symplectic

group is connected, we do not face the difficulties that confronted us in the orthogonal case; we need
only produce a weight. The imbedding of the torus of Sp(·) in a general linear group looks the same
as for even orthogonal groups, and the formula for restricting a weight looks almost the same:

(ki+1)/2∑
r=1

Xi1,2r−1 −
(ki+1)/2∑
r=2

Xi2,2r−1.

This formula differs from the corresponding one for O(·) factors in that now ki is odd, and the
coordinates of the domino entries have odd column numbers. Moreover, the sum for row i1 has one
more term than that for row i2: it includes the vertical domino in the first column.

An example of weight restriction may help illustrate this process:

7
2 4
1 4

−6 −2 −1
8

5

7→ (8)︸︷︷︸
Sp(2)

, (−)︸︷︷︸
O(1)

, (+)︸︷︷︸
O(1)

, (5)︸︷︷︸
Sp(2)

Now that we understand restriction, we can introduce some of the notation we had in the GL(n,C)
case. We define κ : D̃(d) → Ĝd

red to be the map which assigns to each diagram the irreducible
algebraic representation of Gd

red obtained by the above procedure. Furthermore, if τ is an irreducible
algebraic representation of Gd

red, we define

D̃(d, τ) = {X ∈ D̃(d) | κ(X) = τ}.

The final task for this section is to define the maps E,F : D̃n → D̃n. The former is quite
straightforward: recall, once again, that each column save the first corresponds to a GL(·) factor of
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Ld; for each of these, the formula is precisely the same as in type A:

(EX)ir = Xir + #{Xjr | Xjr < Xir, or Xjr = Xir with j > i}
−#{Xjr | Xjr > Xir, or Xjr = Xir with j < i},

provided that r > 1. The first column consists of vertical dominoes and corresponds to the Sp(·)
factor of Ld. In this case, the formula is

(EX)i1 = Xi1 + 2p ·#{Xj1 | |Xj1| < |Xi1|, or |Xj1| = |Xi1| with j > i}

where

p =

{
+1 if Xi1 ≥ 0,
−1 if Xi1 < 0.

The map F is significantly harder to give an analysis of. In fact, we shall not do so presently,
but rather content ourselves with a description of the weights that occur in ud/vd. Recall that this
last space is the eigenspace of eigenvalue 1 for the semisimple element of a Jacobson-Morozov triple
for the orbit Od. Let {hd, ed, fd} be this Jacobson-Morozov sl(2)-triple. Now, the partition d is
essentially a description of the decomposition of the standard representation of sp(2n) on C2n into
representations of this sl(2).

It is important not to confuse the two representations of this sl(2), on sp(2n) by the adjoint
action and on C2n by the standard representation. It is the 1-eigenspace in the former that we seek
to identify, but we shall do so by examining the latter, which is described by d. Now, the roots
of sp(2n) have the form εi ± εj and ±2εi. The values of the εi’s on hd are (roughly speaking) the
nonnegative eigenvalues of hd on C2n. (Of course, 0 occurs as a value of the εi’s with only half the
multiplicity it has as an eigenvalue of hd on C2n.) So hd has an eigenvector of the form εi − εj
with eigenvalue 1 in its adjoint action for each pair of nonnegative eigenvalues differing by 1 in its
standard action. In addition, it has 1-eigenspaces of the form εi + εj each time 1 and 0 occur as a
pair of eigenvalues in the standard action.

How do we translate this into something having to do with weight diagrams? The columns
of a weight diagrams correspond to factors of Ld, which in turn correspond to the nonnegative
eigenvalues of hd in the standard representation. So there is an eigenvector of eigenvalue 1 for hd

in its adjoint action for each pair of entries in neighboring columns; and there is an additional such
eigenvector when the pair of dominoes lie in the first and second columns.

Specifically, fix a weight diagram X. Let Z(i, r; j, s) be a weight diagram of the same shape as
X, all of whose entries are 0, save that it has a −1 at location (i, r), and a +1 at location (j, s). Let
Z ′(i, r; j, s) denote the same diagram, but with +1’s at both locations. Consider the following set
of diagrams.

P(X) = {Z(i, r; i+ 1, s) | X has entries at both (i, r) and (i+ 1, s)}
∪ {Z ′(1, r; 2, s) | X has entries at both (1, r) and (2, s)}

Now, diagrams of the same shape can be added entry-by-entry. The diagrams in P(X) are in one-
to-one correspondence with the weights of ud/vd; according to Claim 2.3.2, we wish to add some
subset of these to X such that the size of the resulting sum is maximized. In other words, the map
F for type-C diagrams is defined exactly as in (2.16) and (2.17).

6.3 Even Orbits in the Symplectic Group

Because computing F is a dicey matter, we put it aside for the time being. We instead concentrate
on computing γ on even nilpotent orbits, for which ud/vd = 0, and for which we can therefore ignore
F . The even nilpotent orbits are precisely those orbits indexed by partitions d all of whose parts
have the same parity. Moreover, even among the even orbits, the easiest to handle are those picked
out by the following definition.
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Definition 6.3.1. A partition is called rectangular if it has just one part with some multiplicity:
[ka]. A nilpotent orbit in a classical group is called rectangular if it is indexed by a rectangular
partition. A rectangular partition (resp. the corresponding orbit) is called evenly rectangular if the
multiplicity a is even.

We shall assume that Claim 2.3.1 holds, and we shall compute γ for representations of rectangular
orbits in that context. Now, all the rows of the diagram come in pairs (except possibly for one
singleton row), and the condition that κ have a particular value on a given diagram is a condition
about the difference of the sums of the entries in paired rows. Perhaps if we rewrote the diagram in
a different way, the κ condition would take the form of just requiring particular row-sums—this is
the condition we had in working with weight diagrams for GL(n,C). Then, perhaps the GL(n,C)
techniques can be used to carry out a computation in this setting.

For our first forays into computing γ, we further restrict our attention to the evenly rectangular
orbits.

Definition 6.3.2. Let X be a fully equipped weight diagram of type C, corresponding to an
evenly rectangular orbit. The severing of X is a certain weight diagram XV of type A, obtained
as follows. First, we write down all the dorsal rows of X as a diagram of square boxes. Then, we
juxtapose this with a diagram whose rows consist of the negated entries of ventral rows of X, such
that each negated ventral row appears immediately to the right of its dorsal partner.

Conversely, a rectangular type-A diagram Y can be converted into an evenly rectangular type-C
diagram. The type-C diagram X whose severing is Y is determined up to ordering of its rows; any
such X with XV = Y is called a splicing of Y . The particular splicing which all dorsal rows first,
in the order in which they occur in Y , followed by all ventral rows in the reverse order, is called the
standard splicing of Y .

Example 6.3.3. Here is the severing of a diagram of shape-class [54], yielding a type-A diagram
of shape-class [52]. A small gap has been inserted to separate the dorsal part of each row from the
negated ventral part.

5
3 2
−4 −4

0
2 1
−3 −1

7→ 5 3 2 4 4
0 2 1 3 1

The standard splicing of the latter diagram is difficult to draw, because the first row is not adjacent
to its ventral partner. One might draw the following diagram, which is intended to have only four
rows:

5
3 2

0
2 1
−3 −1
−4 −4

This example demonstrates the need for a better notation for drawing domino weight diagrams.

How does κ behave with respect to severing? In type A, the output of κ is just a dominant
weight; but in type C, it may be a highest weight accompanied by a plus or minus sign. Let us write
κA and κC to distinguish the maps κ in the type-A and type-C cases. The following lemma is easy
to establish.

Lemma 6.3.4. Let X be an evenly rectangular weight diagram of type C, with severing XV. We
have

κA(XV) = highest weight of κC(X),

where we regard the weights merely as tuples of integers.

Of course, the map E looks quite different. Or does it? As with κ, let us introduce the subscripted
notations EA and EC to distinguish the two operations; furthermore, we have the new function EV

C
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on rectangular type-A diagrams defined by

EV
C (X) =

(
EC(the standard splicing of X)

)V
.

(There is no particular significance to having chosen the standard splicing for the right-hand side.
Any splicing would do; we have just chosen one for the sake of having EV

C be well-defined.) All
the machinery developed in Chapters 3 and 4 is set up to work with EA. If we want to compute
something involving EV

C , we must understand the relationship between these two maps.
Let us define yet another map on type-A weight diagrams as follows.

(E0X)ir =

{
(EAX)ir + (number of rows of X) if r > 1,
(EAX)i1 + (number of rows of X) + 1 if r = 1.

(6.1)

Suppose we make the assumption that in a given column, all the entries in ventral rows are
less than than any entry in any dorsal row. (This assumption is satisfied in the example above:
indeed, all entries in dorsal rows are positive, and all those in ventral rows are negative.) Under this
assumption, our EV

C is given exactly by the above formula for E0. The salient property of the latter
is that the amount by which it differs from EA is constant on columns.

Proposition 6.3.5. The propositions of Section 3.2 remain true if, in every statement, we
replace EA by a modified function E′, defined as

(E′X)ir = EAXir + f(r),

where f is some integer-valued function of the column index.

Proof. The reader may examine those proofs and determine that the actual definition of EA is
almost never used. Most of these proofs entail computations with quantities of the form EAXir −
EAXjr; such a difference is obviously left unchanged by columnwise addition of a quantity f(r).
The proof of Proposition 3.2.8 does mention the definition explicitly, but only as a stepping-stone
to equation (3.4), and that equation still holds even if the definition of EA is modified.

The point of the preceding proposition is, of course, that the aforementioned E0 is exactly in
the form of E′. Now, this proposition is useless unless we can meet the assumption that all dorsal
entries in a given column are smaller than all ventral entries. Instead of attacking this problem
directly, we can define it out of existence, and then subsequently determine that our definition was
not nonsensical. To rephrase in a less opaque manner, we shall see that it is just as well to apply
the type-A machinery to the severed diagram using E0 even when E0 does not coincide with EV

C .
The following lemma tells us why.

Lemma 6.3.6. ‖E0X‖2 ≤ ‖EV
CX‖2.

Proof. The map EV
C just adds 2ρLd

, after choosing a positive root system with respect to which πX
is dominant. The map E0 was defined, essentially, as “the map that EV

C would be if πX met certain
dominance conditions.” Another way of saying that is that E0 also just adds 2ρLd

, but possibly
with respect to a different choice of positive root system. Now, if λ is a dominant weight, it follows
that

‖λ+ w · 2ρLd
‖2 (w ∈WLd

)

is maximized when w = 1, just from the elementary theory of weights and root systems. The
statement that

‖λ+ w · 2ρLd
‖2 ≤ ‖λ+ 2ρLd

‖2

is just a rephrasing of the statement of the lemma.

We shall need the following lemma concerning the operation of the type-A algorithms on rect-
angular diagrams. We use the notation bxc (resp. dxe) to denote the greatest (resp. least) integer
less (resp. greater) than x.
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Lemma 6.3.7. Let d be a rectangular partition, and let X ∈ D̃◦(d, τ ;An). Then, on any given
row of X, two entries may differ by at most 1. Moreover, if the i-th coordinate of the highest weight
of τ is p, and if X has k columns, then every entry on the i-th row of X is either bp/kc or dp/ke.

Proof. Recall the properties p1(r), . . . ,p4(r) defined in Section 3.2, all of which are had by our X.
Suppose, without loss of generality, that we have Xis −Xir ≥ 2, with s < r. Then, Xis must not
be lowerable, so i is not the last row, and indeed Xi+1,s = Xis. Since X is a rectangular diagram,
there is also an entry at (i+ 1, r), such that Xi+1,r ≤ Xir. It follows that Xi+1,s −Xi+1,r ≥ 2.

What we have shown is that if row i has two entries that differ by at least 2, then it is not the
bottom row, and row i + 1 also has two entries that differ by at least two. We could repeat this
argument ad infinitum, but X of course only has finitely many rows, so we have a contradiction.

For the second part of the lemma, we have
∑
rXir = p. If some entry were larger than dp/ke,

then the fact that no entries can differ by more than one would imply that all the entries were at
least as large as dp/ke, with at least one strictly larger. This means the sum of the entries on this
row would necessarily be larger than p. So no entry can be larger than dp/ke. By a similar argument,
none can be smaller than bp/kc.

Let d be an evenly rectangular partition, and let τ be an irreducible representation of Gd
red that is

wholly determined by its highest weight. (In other words, if Gd
red is a symplectic group, we admit any

τ whatsoever, but if Gd
red is an even orthogonal group, we do not admit τ ’s whose highest weight has

a 0 for the final coordinate.) Consider the following procedure for manipulating rectangular type-C
weight diagrams.

1. Start with any diagram X ∈ D̃(d, τ), and form its severing XV.

2. Apply the type-A algorithm for α to Y , but with E0 taking the place of E.

3. Form the standard splicing X ′ of α(XV).

We then have the following preliminary result towards computing γ for Sp(2n,C).

Theorem 6.3.8. Assume that Claim 2.3.1 holds. For Sp(2n,C), the map γ for evenly rectangular
orbits and for representations determined by their highest weights is given by

γ(d, τ) = πEC(X ′),

where X ′ is the diagram produced in the above procedure.

Proof. Let d′ be the shape-class of the severed diagram. Furthermore, let us abuse notation and
let τ refer to any of the following: the given irreducible representation of Gd

red; the highest weight
of said representation; or the same tuple of integers regarded as a dominant weight for the isotropy
group of the GL(n,C)-orbit Od′ . We have already established that the moves used in the type-A
algorithm still work as described in Chapter 4 when EA is replaced by E0, so the diagram α(XV)
has the following properties:

αXV ∈ D̃(d′, τ ;An)

‖E0αX
V‖2 ≤ ‖E0Y ‖2 for any Y ∈ D̃(d′, τ ;An)

From the latter of these and the preceding lemma, we obtain

‖E0αX
V‖2 ≤ ‖EV

CY ‖2 for any Y ∈ D̃(d′, τ ;An).

Now, the standard choice of coordinates for weights in the GL(n,C) and Sp(2n,C) contexts is such
that their norms coincide. In particular, since any diagram in D̃(d′, τ ;An) arises as the severing of
some diagram in D̃(d, τ ;Cn), we have

‖E0αX
V‖2 ≤ ‖ECY ‖2 for any Y ∈ D̃(d, τ ;Cn). (6.2)
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Of course, we have in particular that ‖E0αX
V‖2 ≤ ‖ECX ′‖2. Claim 2.3.1 tells us that if we actually

had
‖E0αX

V‖2 = ‖ECX ′‖2, (6.3)

then it would follow from (6.2) that γ(d, τ) = πECX
′.

Therefore, it only remains to establish (6.3). Since αXV = (X ′)V, this equation would follow
if we knew, for instance, that in any given column of X ′, every dorsal entry was smaller than
every ventral entry. That last condition can be obtained by applying Lemma 6.3.7. Since τ is a
dominant weight of either a symplectic or orthogonal group, all its coordinates are nonnegative. By
Lemma 6.3.7, we have that every entry of (X ′)V is nonnegative. Therefore, in X ′, all the entries in
dorsal rows are nonnegative, and all those in ventral rows are nonpositive. Thus, on (X ′)V, EV

C and
E0 coincide, so (6.3) becomes

‖ECX ′‖2 ≤ ‖ECY ‖2 for any Y ∈ D̃(d, τ,Cn).

The theorem follows.
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APPENDIX A

Algorithms for the General Linear Group

In this appendix, we work out one example each for the two algorithms α and β for GL(n,C). Both
examples are set on the orbit labelled d = [4, 3, 2, 12] in GL(11,C). For this orbit, we have

Gd
red ' GL(1)3 ×GL(2) and Ld ' GL(5)×GL(3)×GL(2)×GL(1).

We carry out α for the representation of Gd
red whose highest weight is τ = ((15), (14), (9), (4, 4));

this eventually gives us that

γ([4, 3, 2, 12], ((15), (14), (9), (4, 4))) = (8, 7, 6, 6, 5, 4, 3, 3, 2, 2, 0).

Then, we start with the GL(11)-weight on the right-hand side of this equation and carry out β to
recover the parameters on the left-hand side.

The reader should be aware of one caveat with regard to α. Recall that when α was defined,
there was initially some ambiguity as to the order in which moves were to be performed; this was
resolved (more or less arbitrarily) by decreeing that moves are to be performed in the order in which
they are listed in Table 3.3. However, based on subsequently proved properties of α, it is clear that
any sequence of well-behaved moves results in progress towards the final answer. Moreover, even
moves that are not well-behaved never do irreparable damage, since all moves preserve D̃(d, τ). In
practice, one can sometimes decrease the total number of moves required by performing a cleverly
chosen move that is not well-behaved.

In other words, in the α example, we arrive at the answer through some sequence of moves,
although we do not strictly follow the prescribed sequence.

Description X EX

1 Fill in ((15), (14), (9), (4, 4)) in the first
column.

15 0 0 0
14 0 0
9 0
4
4

19 2 1 0
16 0 −1
9 −2
2
0

2 Perform A five times with s = 1, r = 2,
on rows 1–3.

10 5 0 0
9 5 0
4 5
4
4

14 7 1 0
11 5 −1
4 3
2
0

3 Perform A three more times with s =
1, r = 2, on rows 1 and 2.

7 8 0 0
6 8 0
4 5
4
4

11 10 1 0
8 8 −1
4 3
2
0
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Description X EX

4
Perform A as many times as possible
with s = 1 or 2 and r = 3, first on row
2, and then on row 1.

4 5 6 0
4 5 5
4 5
4
4

8 7 7 0
6 5 4
4 3
2
0

5 Perform B on rows 2 and 3.

4 5 6 0
4 5
4 5 5
4
4

8 7 7 0
6 5
4 3 4
2
0

6 Perform A once with s = 3, r = 4 on
row 1.

4 5 5 1
4 5
4 5 5
4
4

8 7 6 1
6 5
4 3 4
2
0

7 Perform B on rows 1 and 3.

4 5 5
4 5
4 5 5 1
4
4

8 7 6
6 5
4 3 4 1
2
0

8
Perform A on row 3, once with s = 2
and r = 4, and once with s = 3 and
r = 4.

4 5 5
4 5
4 4 4 3
4
4

8 7 6
6 5
4 2 3 3
2
0

9 Perform B on rows 3 and 4.

4 5 5
4 5
4
4 4 4 3
4

8 7 6
6 5
4
2 2 3 3
0

10
Perform B on rows 1 and 2. The re-
sulting diagram is now in D̃◦(d), so we
are finished.

4 5
4 5 5
4
4 4 4 3
4

8 7
6 5 6
4
2 2 3 3
0
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From this last step, we read off (8, 7, 6, 6, 5, 4, 3, 3, 2, 2, 0) as the desired weight of GL(11). Now,
we start with that weight, and we carry out β to recover a diagram from which we can find obtain
the original partition d and weight of Gd

red.

Description Clumps Diagram

1 We form two clumps.
A1,1 = {8, 7, 6, 6, 5, 4, 3, 3, 2, 2}
A1,2 = {0}

2

Clump A1,1 has even length, and the
current column index r = 1 is odd, so
we take the odd-index values from A1,1.
A1,2 has odd length, so we take its odd-
index values as well.

A1,1 = {68, 7, 66, 6, 5, 64, 3, 3, 62, 2}
A1,2 = {60}
Z1 = {8, 6, 4, 2, 0}

3

We arrange the entries of Z1 in de-
creasing order to form the first column.
After deleting these entries from the
A1,·’s, we are left with the collection of
integers σ2, which we arrange into two
clumps.

σ2 = {7, 6, 5, 3, 3, 2}
A2,1 = {7, 6, 5}
A2,2 = {3, 3, 2}

8
6
4
2
0

4

Clump A2.1 has odd length, so we take
its odd-index values. Clump A2 has
even length, and the current column,
r = 2, is even, so we take its even-index
values.

A2,1 = {67, 6, 65}
A2,2 = {3, 3, 62}
Z2 = {7, 5, 2}

5

We fill in the elements of Z2 in the sec-
ond column so that they are adjacent
to first-column entries from which they
differ by either 0 or −1. The remaining
numbers form σ3, which splits into two
clumps.

σ3 = {6, 3, 3}
A3,1 = {6}
A3,2 = {3, 3}

8 7
6 5
4
2 2
0

6

Both clumps have odd length (indeed,
length 1), so we take the odd-index
values (i.e., the only value) from each
clump for Z3.

A3,1 = {66}
A3,2 = {63, 3}
Z3 = {6, 3}

7

To build column 3, we put the entries of
Z3 next to entries in the second column
from which they differ by 0 or +1. We
also write down σ4, which is just one
clump.

σ4 = {3}
A4,1 = {3}

8 7
6 5 6
4
2 2 3
0

8

Z4 only has one element, which we
position next to a third-column entry
from which it differs by 0 or −1. Then
σ5 is empty, so we are finished.

A4,1 = {63}
Z4 = {3}

σ5{ }

8 7
6 5 6
4
2 2 3 3
0
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From this last diagram, we compute

E−1X =

4 5
4 5 5
4
4 4 4 3
4

and
d = [4, 3, 2, 12]

κ(E−1X) = ((15), (14), (9), (4, 4)),

as desired.
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APPENDIX B

Computed Examples

This appendix gives tables of computed values of γ in several groups of type other than An. In
particular, inspection of the tables for Sp(4,C), Sp(6,C), and G2 shows that γ is, in fact, a bijection
in each of these cases. Moreover, the values taken by γ on evenly rectangular nilpotent orbits can
be seen to coincide with those tentatively claimed in Chapter 6.

A partial computation is of γ is given for F4. In this group, γ was computed only for represen-
tations of the component group of the centralizer of each orbit. This partial computation may give
some hints as to what the full γ looks like; moreover, this table lends itself to verification of certain
conjectures of Sommers [1].

Table B.1. Computation of γ for Sp(4,C)

Orbit
label

Reductive part of
isotropy group

Jacobson-Morozov
Levi subgroup L

Weight
of G

[14] Sp(4) Sp(4)
(a, b) (a, b) (a+ 2, b+ 2)

[2, 12] O(1)× Sp(2) GL(1)× Sp(2)
τ ⊗ (a) (−a, a) (a+ 2, 1)
ε⊗ (a) (−a− 1, a) (a+ 3, 0)

[22] O(2) GL(2)
τ (0, 0) (0, 1)
ε (0,±1) (2, 0)

(a)⊕ (−a) (a,−a2 ) (0, a−2
2 + 2)

(a,−a±1
2 ) (1, a−1

2 + 1)
[4] O(1) GL(1)2

τ (0, 0) (0, 0)
ε (0, 1) (1, 0)
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Table B.2. Computation of γ for Sp(6,C)

Orbit
label

Reductive part of
isotropy group

Jacobson-Morozov
Levi subgroup L

Weight
of G

[16] Sp(6) Sp(6)
(a, b, c) (a, b, c) (a+ 2, b+ 2, c+ 2)

[2, 14] O(1)× Sp(4) GL(1)× Sp(4)
τ ⊗ (a, b) (−a− b− 2, a, b) (a+ 2, b+ 3, 0)
ε⊗ (a, b) (−a− b− 3, a, b) (a+ 2, b+ 2, 1)

[22, 12] O(2)× Sp(2) GL(2)× Sp(2)
τ ⊗ (b) (0,−b− 2,−b) (b+ 2, 2, 0)
ε⊗ (b) (0,−b− 1, b) (b+ 3, 0, 1)

((a)⊕ (−a))⊗ (b) (a,−b− a
2 − 1, b) (b− (a2 − 1) + 2, 0, (a2 − 1) + 2)

(0, (a2 − 2)− b+ 2, b+ 2)
(a,−b− a−1

2 − 2, b) (b− a−1
2 + 2, 1, a−1

2 + 1)
(1, (a−1

2 − 1)− b+ 1, b+ 2)
[23] O(3) GL(3)

τ ⊗ (a) (a2 ,
a
2 ,−

a
2 ) (0, a2 + 2, 0)

(a+1
2 , a−1

2 ,−a+1
2 ) (1, a−1

2 + 1, 1)
ε⊗ (0) (0, 0, 1) (2, 0, 1)
ε⊗ (a) (a2 − 1, a2 + 1,−a2 ) (0, a−2

2 + 2, 1)
(a+1

2 , a−1
2 ,−a−1

2 ) (1, a−1
2 + 2, 0)

[32] Sp(2) GL(2)× Sp(2)
(a) ( 2a

3 ,−
2a
3 ,

a
3 ) (1, 0, a3 + 1)

( 2a+1
3 ,− 2a+1

3 , a−1
3 ) (0, 1, a−1

3 + 1)
( 2a+2

3 ,− 2a−1
3 , a−2

3 ) (0, 0, a−2
3 + 2)

[4, 12] O(1)× Sp(2) GL(1)2 × Sp(2)
τ ⊗ (a) (0,−a− 1, a) (a+ 2, 1, 0)
ε⊗ (a) (±1,−a− 1, a) (a+ 3, 0, 0)

[4, 2] O(1)2 GL(1)×GL(2)
τ ⊗ τ (0, 0, 0) (0, 1, 0)
τ ⊗ ε (0, 0, 1) (1, 1, 0)
ε⊗ τ (1, 0, 0) (0, 0, 1)
ε⊗ ε (−1, 0, 1) (2, 0, 0)

[6] O(1) GL(1)3

τ (0, 0, 0) (0, 0, 0)
ε (1, 0, 0) (1, 0, 0)
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Table B.3. Computation of γ for G2

Orbit
label

Reductive part of
isotropy group

Jacobson-Morozov
Levi subgroup L

Weight
of G

0 G2 G2

(a, b) (a, b)
A1 A1 GL(2)

g1-weights: (2,−3), (1,−1), (0, 1), (−1, 3)
(a) (−a+2

2 , a) (0, a2 + 3)
(−a+2±1

2 , a) (1, a−1
2 + 2)

Ã1 A1 GL(2)
g1-weights: (−1, 2), (1,−1)

(a) (a,− 3a+1
2 ) (a−1

2 + 2, 0)
(a,− 3a+1±1

2 ) (a2 + 1, 1)
G2(a1) S3 GL(2)

τ (0, 0) (0, 1)
ε (1, 0) (0, 2)
ζ (0, 1) (1, 0)

G2 1 GL(1)2

τ (0, 0) (0, 0)

67



Table B.4. Partial Computation of γ in F4

Orbit
label

Component group of
isotropy group

Jacobson-Morozov
Levi subgroup L

Weight
of G

1 1
τ 0 (2, 2, 2, 2)

A1 1
τ −3ω1,−4ω1 (1, 1, 2, 2)

Ã1 S2

τ −2ω4 (2, 1, 0, 3)
ε −ω4 (2, 0, 2, 2)

A1 + Ã1 1
τ −ω2 (2, 0, 2, 0)

A2 S2

τ 0 (0, 0, 2, 2)
ε ±ω1 (1, 1, 0, 2)

Ã2 1
τ 0 (2, 1, 0, 1)

A2 + Ã1 1
τ 0 (1, 1, 0, 1)

B2 S2

τ ω1 − 2ω4 (1, 0, 0, 3)
ε −ω4 (0, 1, 0, 2)

Ã2 +A1 1
τ ω4 − ω2 (0, 1, 1, 0)

C3(a1) S2

τ 0,−ω1 (1, 1, 0, 0)
ε ω3 − ω1 (1, 0, 1, 1)

F4(a3) S4

τ 0 (0, 1, 0, 0)
ε ω2 (0, 0, 2, 0)
σ ω1 (1, 0, 0, 2)
η ω4, ω3 − ω2 (1, 0, 1, 0)

η ⊗ ε ω3, ω4 − ω2 (0, 1, 0, 1)
B3 1

τ 0 (0, 0, 0, 2)
C3 1

τ 0 (2, 0, 0, 0)
F4(a2) S2

τ 0 (0, 0, 1, 0)
ε ω2 − 2ω4 (1, 0, 0, 1)

F4(a1) S2

τ 0 (0, 0, 0, 1)
ε ω4 (1, 0, 0, 0)

F4 1
τ 0 (0, 0, 0, 0)
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