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Abstract. We generalize [6, Theorem 3] to a Mackey-type formula for the

compact restriction of a semisimple perverse sheaf produced by parabolic in-
duction from a character sheaf, under certain conditions on the parahoric group

scheme used to define compact restriction. This provides new tools for match-
ing character sheaves with admissible representations.

Introduction

In this paper we prove a Mackey-type formula for the compact restriction func-
tors introduced in [6]. The main result, Theorem 1, applies to any connected
reductive linear algebraic group G over any non-Archimendean local field K that
satisfies the following three hypotheses:

(H.0) G is the generic fibre of a smooth, connected reductive group scheme over
the ring of integers OK of K;

(H.1) the characteristic of K is not 2 (in particular, this condition is met if the
characteristic of K is 0);

(H.2) for every parabolic subgroup PK̄
′ ⊆ G ×Spec(K) Spec

(
K̄
)

there is a finite
unramified extension K′ of K and a subgroup P ⊆ G ×Spec(K) Spec (K′)
such that P ×Spec(K′) Spec

(
K̄
)

is conjugate to PK̄
′ by an element of G(Ktr).

Here, K̄ is a separable algebraic closure of K and Ktr is the maximal tamely ramified
extension of K contained in K̄.

As far as applications to representation theory are concerned, these are, arguably,
mild hypotheses. Hypothesis H.0 is equivalent to demanding that the Bruhat-Tits
building of G(K) admits a hyperspecial vertex (see [22]). Every quasi-split reductive
linear algebraic group over K that splits over an unramified extension of K satisfies
this hypothesis (again, see [22]). Hypothesis H.1 is met whenever K is a finite
extension of Qp and p > 2. Hypothesis H.2 is satisfied if G is quasi-split over a
maximal unramified extension of K and so, in particular, if G is quasi-split over K.
If G is specified, Hypothesis H.2 has the effect of imposing a lower bound on the
residual characteristic of K that depends on G. One large and interesting class of
algebraic groups to which Theorem 1 applies (because they satisfy Hypotheses H.0,
H.1 and H.2) consists of unramified linear algebraic groups G over non-Archimedean
local fields K of characteristic 0 or greater than 3.

In order to state Theorem 1, we must recall a few facts concerning parahoric
group schemes. In [4] and [5], François Bruhat and Jacques Tits showed that
parahoric subgroups of G(K) (where G is a connected reductive linear algebraic
group over K) may be understood as subgroups arising from a class of smooth group
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schemes over Spec (OK) with generic fibre G; these smooth integral models for G
are habitually called parahoric group schemes. They further showed that parahoric
group schemes are parametrized by facets in the Bruhat-Tits building for G(K).
Let I(G,K) denote the Bruhat-Tits building for G(K) and for each x ∈ I(G,K), let
Gx denote the parahoric group scheme attached to (the minimal facet containing)
x. Then Gx is a smooth group scheme over Spec (OK) and its generic fibre, (Gx)K,
is G. The group Gx(OK) of OK-rational points on Gx is a parahoric subgroup of
G(K) and every parahoric subgroup of G(K) arises in this manner. Although the
special fibre of Gx, denoted by (Gx)Fq in this paper, is a connected linear algebraic
group over the residue field Fq of K, it is generally not a reductive group scheme.
Parahoric group schemes are generally not reductive group schemes. In fact, Gx is
reductive precisely when the parahoric subgroup Gx(OK) is hyperspecial; in this
case, x is a hyperspecial vertex in I(G,K). Even if x is not hyperspecial, it is useful
to consider the map (of group schemes over Fq) νGx

: (Gx)Fq → (Gx)red
Fq

to the
maximal reductive quotient of (Gx)Fq

.
One more notion is required in order to state Theorem 1: the compact restric-

tion functors introduced in [6]. These are designed with applications to characters
of admissible representations in mind; here we recall their definition only. Each
parahoric group scheme Gx determines a compact restriction functor

cres(Gx)OK̄
: Db

c(GK̄, Q̄`)→ Db
c((Gx)red

F̄q
, Q̄`),

introduced in [6, Definition 1] and defined by

cres(Gx)OK̄
:= (ν(Gx)OK̄

)! (dim νGx
/2) RΨ(Gx)OK̄

.

Here RΨ(Gx)OK̄
: Db

c(GK̄, Q̄`) → Db
c((Gx)F̄q

, Q̄`) is the nearby cycles functor (de-
fined as in [1, 4.4.1], for example) for the group scheme (Gx)OK̄ :=Gx ×Spec(OK)

Spec (OK̄), where OK̄ is the ring of integers of a fixed separable algebraic closure
K̄ of K, and (dim νGx

/2) indicates Tate twist by dim νGx
/2. Notice that the com-

pact restriction functor uses push-forward with compact supports of the morphism
ν(Gx)OK̄

: (Gx)F̄q
→ (Gx)red

F̄q
obtained from νGx

by extending scalars from Fq (the
residue field of K) to F̄q (the residue field of K̄). Hypothesis H.0 ensures that
dim νGx

is even [6, Lemma 2].
Now we may state Theorem 1, supposing Hypotheses H.1 and H.2 are met for G

over K: if K′/K is a finite unramified extension and if P is a parabolic subgroup of
G×Spec(K) Spec (K′) with reductive quotient L×Spec(K) Spec (K′) (so L is a ‘twisted
Levi subgroup’ of G), then for every x ∈ I(G,K) for which that star of x ∈ I(G,K)
contains a hyperspecial vertex (in which case Hypothesis H.0 is also met) there is
a finite set S ⊂ G(K′) such that

cres(Gx)OK̄
indGK̄

PK̄
G ∼= ⊕

g∈S
ind

(Gx)red
F̄q

νG
x′

( gPx′ )F̄q

g
(

cres(Lx′g)OK̄
G
)
,

for every character sheaf G of LK̄ :=L ×Spec(K) Spec
(
K̄
)
. The finite set S, the

parabolic subgroups νGx′
( gP x′)F̄q

of (Gx)red
F̄q

, the integral models Lx′g appearing
in cres(Lx′g)OK̄

, and the meaning of g(cres(Lx′g)OK̄
G), are all given in the proof of

Theorem 1.
In [6] we showed that the compact restriction functors cres(Gx)OK̄

satisfy proper-
ties that go some way to showing that they are cohomological analogues of compact
restriction functors for admissible representations. Theorem 1 extends this analogy
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by providing a Mackey-type formula for cres(Gx)OK̄
indGK̄

PK̄
G in certain cases. We

believe that the condition placed on x (that its star contains a hyperspecial vertex)
is unnecessary; that is the content of Conjecture 1 and the subject of current work.

Before concluding this introduction we acknowledge the elephant in the room:
we do not know if the compact restriction cres(Gx)OK̄

F of a character sheaf F of
GK̄ is, in general, a semisimple perverse sheaf. However, if x0 is hyperspecial, then
cres(Gx0

)OK̄
F = RΨ(Gx0

)OK̄
F , which is perverse if F is perverse. In Proposition 8

we show that more is true: if F is a character sheaf of GK̄ and x0 is hyperspecial,
then cres(Gx0

)OK̄
F is a direct sum of character sheaves of (Gx0

)red
F̄q

= (Gx0
)F̄q

, and
therefore a semisimple perverse sheaf of geometric origin. This is a crucial ingredient
in the proof of Theorem 1.

We offer our thanks to Hadi Salmasian, who supplied several ideas for this paper.

1. Cuspidal perverse sheaves

Let k be any algebraically closed field and let Gk be any connected reductive
linear algebraic group over k. A perverse sheaf F on Gk is a strongly cuspidal
perverse sheaf [11, 7.1.5] if:

(SC.1) there is some n ∈ N invertible in k such that F is equivariant with respect
to the Gk ×Z◦Gk

action on Gk defined by (g, z) : h 7→ znghg−1;
(SC.2) resGk

Pk
F = 0 for every proper parabolic subgroup Pk ⊂ Gk.

A perverse sheaf F is a cuspidal perverse sheaf if it satisfies an a priori weaker
condition, articulated in [10, 7.1.1]; in particular, every strongly cuspidal perverse
sheaf is a cuspidal perverse sheaf. In [11, 7.1.6], Lusztig showed that every character
sheaf is cuspidal if and only if it is strongly cuspidal. He also showed [14, Theo-
rem 23.1(b)] that if Gk is classical or exceptional in good characteristic, then every
simple cuspidal perverse sheaf on Gk is a character sheaf. Accordingly, in these
cases, it has been known for some time that every simple cuspidal perverse sheaf
is a cuspidal character sheaf. More recently, Ostrik has made this result uncondi-
tional: every simple cuspidal perverse sheaf of Gk is a cuspidal character sheaf of
Gk, for every connected reductive linear algebraic group Gk over any algebraically
closed field k [16, Theorem 2.12].

For every cuspidal character sheaf F there is a cuspidal pair (Σ, E) [9, Defini-
tion 2.4] such that F = j!∗ E [dim Σ] [10, Proposition 3.12] where j : Σ → Gk
is the inclusion of the locally closed subvariety Σ. The cuspidal character sheaf
j!∗ E [dim Σ] is clean [11, Definition 7.7] if

j!∗ E [dim Σ] ∼= j! E [dim Σ] ∼= j∗ E [dim Σ].

A connected, reductive linear algebraic group is clean [12, 13.9.2] if every cuspidal
character sheaf of every Levi subgroup of Gk is clean. Lusztig has conjectured that
every connected reductive linear algebraic group Gk over an algebraically closed
field k is clean, and has shown [14, Theorem 23.1 (a)] that if the characteristic of
the field k is not 2, 3 or 5 then Gk is clean; in fact, [14, Theorem 23.1 (a)] shows
much more. This result was strengthened by Shoji in [17] and [18], and again by
Ostrik [16, Theorem 1], in light of which we now know that if the characteristic of
k is not 2 or if Gk has no factors of type F4 or E8, then Gk is clean. In particular,
if the characteristic of k is not 2, then Gk is clean.
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Proposition 1. If Gk is clean then every strongly cuspidal perverse sheaf on Gk
is a direct sum of cuspidal character sheaves; in particular, under these conditions
every strongly cuspidal perverse sheaf on Gk is semisimple of geometric origin.

Proof. The category of perverse sheaves on Gk is Artinian and Noetherian: every
perverse sheaf has finite length [1, Théorème 4.3.1 (i)]. We prove Proposition 1 by
induction on the length (of the composition series) of cuspidal perverse sheaves on
Gk. First, suppose F is a cuspidal perverse sheaf and the length of F is 1. Then
F is a simple perverse sheaf and a strongly cuspidal perverse sheaf, and therefore
a cuspidal character sheaf, by hypothesis.

Next, suppose F is a strongly cuspidal perverse sheaf with length at least 2. Let
G be a simple sub-object of F . Arguing as in [10, 1.9.1], it follows that G satisfies
condition SC.1 above (with n determined by F); in particular, G is an equivariant
perverse sheaf.

We will demonstrate that G satisfies condition SC.2. In the abelian category of
perverse sheaves, form the short exact sequence below.

(1) 0 // G // F // F/G // 0

Then F/G is equivariant (again, use [10, 1.9.1]). Let Pk ⊂ G be a proper parabolic
subgroup; let Lk be its reductive quotient. Since resGk

Pk
: MGkGk → MLkLk is

an exact functor (on and to equivariant perverse sheaves) it takes (1) to the short
exact sequence below.

(2) 0 // resGk
Pk
G // resGk

Pk
F // resGk

Pk
(F/G) // 0

Since F is a strongly cuspidal perverse sheaf (by hypothesis) and the sequence is
exact, resGk

Pk
G = 0. Since Pk was an arbitrary proper parabolic subgroup of Gk,

it follows that G is a strongly cuspidal perverse sheaf. Since G is also simple, by
hypothesis, it follows that G is a cuspidal character sheaf.

The paragraph above also shows that resGk
Pk

(F/G) = 0 for every proper parabolic
subgroup of Gk. Thus, F/G is a strongly cuspidal perverse sheaf. Since the length
of F/G is strictly less that that of F , it follows (from the induction hypothesis)
that F/G is a direct sum of cuspidal character sheaves. Accordingly, we write
F/G = ⊕i∈IGi, where each Gi is a cuspidal character sheaf. Since F is an extension
of F/G by G, it corresponds to an element of Ext1(F/G,G). Now, Ext1(F/G,G) =∏
i∈I Ext1(Gi,G). Recall that G and each Gi are cuspidal character sheaves. It now

follows from Lemma 1 that Ext1(Gi,G) = 0, and therefore that Ext1(F/G,G) = 0.
This means that the short exact sequence in (1) is split. Thus,

F = F/G ⊕ G = ⊕
i∈I
Gi ⊕ G.

Therefore, F is a direct sum of cuspidal character sheaves. �

Lemma 1. If Gk is clean then Ext1(Gi,G) = 0 for all cuspidal character sheaves
Gi, G of Gk.

Proof. Let G (resp. Gi) be a clean cuspidal character sheaf of Gk. Then there is a
unique cuspidal pair (Σ, E) (resp. (Σi, Ei)) such that G = IC•(Σ, E)[dim Σ] (resp.
Gi = IC•(Σi, Ei)[dim Σi]). Since we have assumed Gk is clean, G (resp. Gi) is a
clean cuspidal character sheaf. Since G (resp. G) is clean, G = j!∗ E [dim Σ] =
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j∗ E [dim Σ] = j! E [dim Σ] (resp. Gi = (ji)!∗ Ei[dim Σi] = (ji)∗ Ei[dim Σi] =
(ji)! Ei[dim Σi]).

Consider two cases. On the one hand, if Σ 6= Σi then Σ∩Σi = ∅ (this is a property
of cuspidal pairs), and since Gi and G are clean, it follows that Ext1(Gi,G) = 0 for
trivial reasons (they have disjoint support). On the other hand, suppose Σ = Σi.
Then Ext1(Gi,G) = Ext1(j!∗Ei[dim Σ], j!∗E [dim Σ]). Since Gi and G are clean,

Ext1(j!∗Ei[dim Σ], j!∗E [dim Σ]) ∼= Ext1(j!Ei, j∗E).

By adjunction,

Ext1(j!Ei, j∗E) = Ext1(j∗j!Ei, E) = Ext1(Ei, E).

Now Ei and E are local systems on Σ corresponding (under an equivalence of cat-
egories determined by the choice of a geometric point s̄ on Σ) to irreducible Q̄`-
representations of the algebraic fundamental group π1(Σ, s̄). This group is compact
(since it is profinite) and Q̄` is algebraically closed of characteristic 0, so the cate-
gory of Q̄`-representations of π1(Σ, s̄) is semisimple. Thus, Ext1(Ei, E) = 0. �

2. A little geometry

Proposition 2. Let G be a connected, reductive linear algebraic group over a non-
Archimedean local field K. For every parabolic subgroup P ⊆ G and for every
x ∈ I(L,K) there is a smooth integral model P x for P such that P x(OK) = P (K)∩
Gx(OK). Moreover, if L is the Levi subgroup of P and if x actually lies in the
building I(L,K) as a sub-building of I(G,K), then the quotient π : P → L extends
to a morphism of smooth integral models πx : P x → Lx, where Lx is the parahoric
group scheme for L determined by x as an element of I(L,K).

Proof. Let P x be the schematic closure of P in Gx. Observe that P is a closed
subscheme of G and recall that, by definition (cf. [2, §2.5], for example), P x is
the smallest closed sub-scheme of Gx containing P . By [23, §2.6, Lemma], P x is a
model of P and P x is a subscheme of Gx. Let P x → Gx be the closed immersion
extending P ↪→ G such that P x(OK) = P (K) ∩Gx(OK) [5, 1.7].

Now we show that the OK-scheme P x is smooth. Let T be a maximal torus of
G contained in L and let Φ be the root system determined by the pair (G,T ). To
simplify the exposition, we give the proof of smoothness for the case when P is a
Borel subgroup B with Levi T .

Without loss of generality, suppose x lies in the apartment for T . Let T be the
Néron-Raynaud model for T . Arguing as in the proof of [23, §7, Theorem], write Bx
as T×Ux, where Ux is the image of

∏
α Uαx under multiplication, where the product

is taken over all roots in Φ that are positive for B and where Uαx is the unique
smooth integral model of the root subgroup Uα ⊂ G such that Uαx(OK) = Uα(K)x,0
(cf. [5, §4.3]). Since T and Ux are smooth, and since the product is taken over
Spec (OK), it follows that Bx is also smooth.

The last point is clear. �

3. Gm-equivariant base change

Notation from Proposition 2.
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Proposition 3. Let P be a parabolic subgroup of P with Levi subgroup L. Suppose
x0 ∈ I(L,K) ↪→ I(G,K) is hyperspecial. For every equivariant perverse sheaf G on
GK̄,

cres(Lx0
)OK̄

resGK̄
PK̄
G ∼= res

(Gx0
)F̄q

(Px0
)F̄q

cres(Gx0
)OK̄
G.

Proof.

cres(Lx0
)OK̄

resGK̄
PK̄
G

:= RΨ(Lx0
)OK̄

(πPK̄)!

(
G|PK̄

)
∼= ((πx0

)F̄q
)! RΨ(Px0

)OK̄

(
G|PK̄

)
(Lemma 2)

∼= ((πx0
)F̄q

)!

(
RΨ(Lx0

)OK̄
G
)
|(Px0

)F̄q
(smooth base change)

=: res
(Gx0

)F̄q

(Px0
)F̄q

cres(Gx0
)OK̄
G

�

Lemma 2. Let P be a parabolic subgroup of G with Levi subgroup L. Suppose
x ∈ I(L,K) ↪→ I(G,K). If F is an equivariant perverse sheaf on PK̄ then there is
a canonical isomorphism

RΨ(Lx)OK̄
((πx)K̄)!F ∼= ((πx)F̄q

)! RΨ(Px)OK̄
F .

Proof. The quotient π : P → L is not proper, so this is not an instance of proper
base change. Instead, we must do some work. The proof of Lemma 2 is obtained by
introducing an action of Gm,OK on P x and then adapting results from [3, Lemma 6]
and [19, Corollary 1]. Appendix A explains how the terms ‘invariant-theoretic
quotient’ and ‘contracting’ are used below.

In order the use [3], we must establish the following facts.
(B.1) π : P → L is the invariant-theoretic quotient of a contracting K-action of

Gm,K on P ;
(B.2) F is equivariant for the action of Gm,K̄ on PK̄ obtained by extension of

scalars;
(B.3) πx : P x → Lx is the invariant-theoretic quotient of a contracting OK-action

of Gm,OK on P x;
(B.4) (j(Px)OK̄

)∗ F is equivariant for the action of Gm,OK̄
on (P x)OK̄ obtained by

extension of scalars.
Although B.1 and B.2 actually follow from B.3 and B.4, we begin by explaining
what B.1 and B.2 mean and how to use them to prove part of this lemma, before
moving on to the more complicated statements B.3 and B.4 and how to use them.
To simplify the exposition, here we only treat the case when P is a Borel subgroup.

As in the proof of Proposition 2, let T be a maximal torus of G contained
in L and let Φ be the root system determined by the pair (G,T ). Let B be a
Borel subgroup of G with Levi T ; let U ⊇ UP be the unipotent radical of B.
Let Φ+ be the set of roots in Φ that are positive for B. Let δ be the character
of ZT = T defined by δ = 1

2

∑
α∈Φ+ α; this is a (strongly) dominant weight and

the co-character δ̌ is a dominant cocharacter. Then µ : Gm,K × B → B, defined
by µ : (z, b) 7→ δ̌(z) b δ̌(z)−1, is an action of Gm,K on B. Moreover, because δ̌
centralizes T , the restriction of µ to Gm,K × U defines an action µU of Gm,K on U
such that µ(z, u o t) = µU (z, u) o t, with reference to B ∼= U o T . Accordingly,
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BGm,K ∼= UGm,K oT . Using the classical monomorphisms uα : Ga,K → U with image
Uα (see [21] for example) and their fundamental properties (see or [20, 1.1, 1.2(b)],
for example), it follows that UGm,K

B = 1. (The main point here is U ∼=
∏
α∈Φ+ Uα

and tuα(ξ)t−1 = uα(α(t)ξ).) Thus, BGm,K = T . Moreover, it follows from these
same fundamental facts that there is a map µ̄ : A1

K×B → B such that the following
diagram commutes,

Gm,K ×B
µ //

&&LLLLLLLLLL B

A1
K ×B

µ̄

<<yyyyyyyyy

where the bottom-left arrow is the open subscheme in the first component and the
identity on the second. Since this is exactly what it means to say that the action
of Gm,K on B is contracting, and since BGm = T , it follows automatically that
T = B//Gm,K (cf. Appendix A) and that π : B → T is the invariant-theoretic
quotient (cf. Appendix A). Thus, B.1 is established.

Extending scalars from K to K̄ gives an K̄-action of Gm,K̄ on BK̄ which again
is contracting. Because F is an equivariant perverse sheaf for conjugation, and
because the K̄-action of Gm,K̄ on BK̄ is defined by conjugation by the co-character
δ̌, F is equivariant for this action also. This establishes B.2.

We now explain the significance of facts B.1 and B.2. Let ιK̄ : LK̄ ↪→ PK̄ be
inclusion. This is a section of πK̄ : PK̄ → LK̄. Thus, πK̄◦ιK̄ is the identity morphism
of LK̄, so πK̄∗ ιK̄∗ is isomorphic to the identity functor. Composing πK̄∗ with the
adjunction morphism id → ιK̄∗ ιK̄

∗, we thereby obtain a morphism of functors
πK̄∗ → ιK̄

∗ and, dually, ιK̄! → πK̄!. Now, because of B.1 and B.2, [3, §6] applies and
shows that these morphisms of functors induce isomorphisms on Gm,K̄-equivariant
sheaves! In particular,

(3) ιK̄
!F ∼= πK̄!F

Accordingly,

(4) RΨ(Lx)OK̄
πK̄! F ∼= (i(Lx)OK̄

)∗ (j(Lx)OK̄
)∗ ιK̄

! F .

With reference to notation from Proposition 2, let ιx : Lx ↪→ P x be inclusion.
Then (ιx)K̄ = ιK̄ and, by base change,

(5) (j(Lx)OK̄
)∗ ((ιx)K̄)! F ∼= ((ιx)OK̄)! (j(Px)OK̄

)∗ F .

Arguing as above, we obtain a morphism of functors ((ιx)OK̄)! → ((πx)OK̄)!.
We will see that this is an isomorphism of functors on the appropriate category of
sheaves. To do this, we turn to B.3 and B.4.

In order to prove B.3 and B.4 we may suppose, without loss of generality, that
x0 lies in the apartment determined by T . Set T :=T x; this is the Néron-Raynaud
model for T . Each co-character of T extends to a K-morphism Gm,OK → T , as in the
proof of [6, Proposition 4]. Using [6, §2.3], define an OK-action µ

x
: Gm,OK ×Bx →

Bx as above (using the extension of the dominant co-character δ̌). To see that
this action is contracting (cf. Appendix A) recall, for each α ∈ Φ, the smooth
integral scheme Uαx for Uα that appeared in the proof of Proposition 2, and also
Ux. Each Uαx comes equipped with a K-morphism uαx : Ga → Uαx that satisfies
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the analogue of [20, 1.1] and Ux satisfies the analogue [20, 1.2(b)] with regards to
the additive schemes Uαx!

Gm,OK ×Bx
µ

x //

''NNNNNNNNNNN
Bx

A1
OK
×Bx

µ̄
x

::uuuuuuuuu

The proof of B.1, above, adapts to the present context, and gives B.3. The fact
that jPx

is morphism of group schemes gives B.4.
The final miracle is that the proof in [3, §6], which is largely formal, applies to

the category of OK̄-schemes. Accordingly, facts B.3 and B.4 determine

(6) ((ιx)OK̄)! (j(Px)OK̄
)∗ F ∼= ((πx)OK̄)! (j(Px)OK̄

)∗ F .

Thus,

(7) (i(Lx)OK̄
)∗ ((ιx)OK̄)! (j(Px)OK̄

)∗ F ∼= (i(Lx)OK̄
)∗ ((πx)OK̄)! (j(Px)OK̄

)∗ F .

By base change,

(8) (i(Lx)OK̄
)∗ ((πx)OK̄)! (j(Px)OK̄

)∗ F ∼= ((πx)F̄q
)! (i(Px)OK̄

)∗ (j(Px)OK̄
)∗ F ,

and by the definition of the nearby cycles functor,

(9) ((πx)F̄q
)! (i(Px)OK̄

)∗ (j(Px)OK̄
)∗ F ∼= ((πx)F̄q

)! RΨ(Px)OK̄
F .

Combining Equations (4), (5), (7), (8) and (9) gives the proof of Lemma 2. �

4. Nearby cycles of cuspidal character sheaves

Proposition 4. Suppose G is a connected, reductive linear algebraic group over a
non-Archimedean local field K. If Gx0

is hyperspecial and G is a cuspidal character
sheaf of GK̄ then cres(Gx0

)OK̄
G is a strongly cuspidal perverse sheaf on (Gx0

)F̄q
.

Proof. First we show that cres(Gx0
)OK̄
G is a strongly cuspidal perverse sheaf. Let

QF̄q
be a proper parabolic subgroup of (Gx0

)red
F̄q

; let MF̄q
be the Levi subgroup of

QF̄q
. We will see that res

(Gx0
)red

F̄q

QF̄q
cres(Gx0

)OK̄
G = 0.

The parabolic subgroup QF̄q
is defined over some finite extension Fq′ of Fq, so

we write QF̄q
= Q×Spec(Fq′) Spec

(
F̄q
)

where Q is a linear algebraic group over Fq′ .
Let M be the reductive quotient of Q. Let K′ be the unramified extension of K in K̄
with residue field Fq′ . Let x′0 denote the image of x0 under I(G,K) ↪→ I(G,K′) and
let Gx′0 be the parahoric group scheme for GK′ determined by x′0. (Since K′/K is
unramified, Gx′0 = Gx0

×Spec(OK) Spec (OK′). Pick x′ ∈ I(G,K′) such that x′ > x′0
and Px′0≤x′ = Q and (Gx′)

red
Fq′

= M , where Px′0≤x′ is as defined in [6, §2.1] (where it
is denoted by Px≤y). (Such an x′ can be found because, locally, the affine building
at x′0 corresponds to the (spherical) building for (Gx′0)red

Fq′
[8].) Then

res
(Gx0

)F̄q

QF̄q
cres(Gx0

)OK̄
G = res

(Gx0
)F̄q

QF̄q
cres(Gx′0

)OK̄
G = res

(Gx′0
)F̄q

(Qx′0≤x′ )F̄q
cres(Gx′0

)OK̄
G.
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On the other hand, the relative position of x′0 and x′ in I(G,K′) also determines a
proper parabolic subgroup P of GK′ such that (P x′0)red

Fq′
= Px′0≤x′ . Thus,

res
(Gx′0

)F̄q

(Px′0≤x′ )F̄q
cres(Gx′0

)OK̄
G = res

(Gx′0
)F̄q

(Px′0
)F̄q

cres(Gx′0
)OK̄
G.

It follows from Proposition 3 (with K replaced by K′) that,

res
(Gx′0

)F̄q

(Px′0
)F̄q

cres(Gx′0
)OK̄
G = cres(Lx′0

)OK̄
resGK̄

PK̄
G,

where L is the Levi subgroup of P . (Observe that x′0 lies in the image of I(L,K′) ↪→
I(G,K′), by design.) We have used the fact that G is a cuspidal character sheaf
since it is strongly cuspidal. Since P is a proper parabolic subgroup of G, it follows

that resGK̄
PK̄
G = 0. We have now seen that res

(Gx0
)red

F̄q

QF̄q
cres(Gx0

)OK̄
G = 0 for every

proper parabolic subgroup QF̄q
of (Gx0

)red
F̄q

. Thus, cres(Gx0
)OK̄
G satisfies condition

SC.2 (cf. Section 1). To verify condition SC.1 one uses [10, 1.9.1], as in the proof
of Proposition 1. �

5. Nearby cycles of cuspidal character sheaves are semisimple

Proposition 5. Suppose G is a connected, reductive linear algebraic group over
non-Archimedean local field K of odd or zero characteristic. If Gx0

is hyperspecial
and G is a cuspidal character sheaf of GK̄ then cres(Gx0

)OK̄
G is a direct sum of

cuspidal character sheaves on (Gx0
)F̄q

.

Proof. By proposition 4, cres(Gx0
)OK̄
G is a strongly cuspidal perverse sheaf on

(Gx0
)red
F̄q

. Since the characteristic of K is not 2, the residual characteristic of

K is odd. Accordingly, (Gx0
)red
F̄q

is clean ([16, Theorem 1], improving[14, Theo-
rem 23.1 (a)]) and every simple cuspidal perverse sheaf on (Gx0

)F̄q
is a character

sheaf ([16, Theorem 2.12] improving [14, Theorem 23.1 (b)]). It now follows from
Proposition 1 that cres(Gx0

)OK̄
G is a direct sum of cuspidal character sheaves. �

Remark 1. If G is a cuspidal character sheaf of GK̄ and x ∈ I(G,K) is not
hyperspecial and the star of x contains a hyperspecial vertex, then cres(Gx)OK̄

G = 0.
This follows from the proof of Proposition 3 and [6, Theorem 1]. We will not use
that fact in this paper.

6. A little more geometry

Proposition 6. Let G be a connected, reductive linear algebraic group over a non-
Archimedean local field K. For every parabolic subgroup P ⊆ G and every x ∈
I(G,K) there is a smooth integral model Gx/P x for G/P , and a principal fibration
Gx → Gx/P x with group P x such that the special fibre of Gx/P x is the quotient
variety (Gx)Fq

/(P x)Fq
.

Proof. To simplify the exposition we replace P by a Borel subgroup B and construct
Gx → Gx/Bx. Standard techniques extend this construction to give Gx → Gx/P x.

We construct Gx/Bx and the fibration Gx → Gx/Bx. With Φ as in the proof
of Proposition 2, let Φx (resp. Φ+

x ) be the set of roots α ∈ Φ (resp. α ∈ Φ+)
for which ~α(x) = 0, where ~α is an affine root of G with vector part equal to
α. Also, let Wx be the Weyl group for the root system Φx. For each w ∈ Wx,
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define Φx(w)+ := {α ∈ Φ+
x | w(α) ∈ Φ−x }. The image of

∏
α∈Φx(w)+ Uαx under the

multiplication map to Gx will be denoted by Uwx. Let Gwx ⊂ Gx be the (locally
closed) subscheme UwxẇBx, where ẇ ∈ Gx(OK) is a representative for w. Then

Uwx is isomorphic to Al(w)
S and Gwx is isomorphic to Al(w)

S × Bx. Let w0 be the
Coxeter element in Wx (recall that Φx is a reduced root system). Then Gw0x

⊂ Gx
is an open subscheme and Gx = ∪

w∈Wx

ẇGw0x
ẇ−1 is an open covering.

We can now define Gx/Bx by gluing data, as follows. For each w ∈ Wx, let
b(w)

x
: ẇGw0x

ẇ−1 → Al(w0)
OK

be the obvious map (conjugate to Gw0x
, then use

Gw0x
∼= Al(w0)

OK
×Bx and finally project to Al(w0)

OK
). For each pair w1, w2 ∈Wx, set

Vw1 = Al(w0)
OK

; also, let Vw1,w2 be the image of ẇ1Gw0x
ẇ1
−1 ∩ ẇ2Gw0x

ẇ2
−1 under

b(w1)
x

: ẇ1Gw0x
ẇ1
−1 → Al(w0)

OK
. For each pair w1, w2 ∈Wx, glue Vw1 to Vw2 along

Vw1,w2
∼= Vw2,w1 . The resulting scheme is Gx/Bx.

We have now defined Gx/Bx and also bx : Gx → Gx/Bx. It is clear that bx is a
principal fibration with group Bx. Since this fibration is given locally by b(w)

x
—

which is defined by composing two isomorphisms and then projecting Al(w0)
OK

× Bx
— the fibration is smooth.

A smooth fibration p
x

: Gx → Gx/P x with group P x is defined by similar
arguments. From the construction above we see that the special fibre of Gx →
Gx/P x is a cokernel of (P x)Fq

→ (Gx)Fq
in the category of algebraic varieties over

Fq. �

P // G // G/P

(P x)K //

��

(Gx)K

jGx

��

// (Gx)K/(P x)K

��

// Spec (K)

��
P x // Gx // Gx/P x // Spec (OK)

(P x)Fq
//

νGx
|(P x)Fq

��

OO

(Gx)Fq
//

νGx

��

iGx

OO

(Gx)Fq/(P x)Fq

��

OO

// Spec (Fq)

OO

νGx
(P x)Fq

// (Gx)red
Fq

// (Gx)red
Fq
/νGx

(P x)Fq

66mmmmmmmmmmmm

Figure 1. The quotient scheme Gx/P x

Remark 2. If x0 is hyperspecial then Gx0
/P x0

is projective. We will not use that
fact in this paper.
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7. A (hyper)special case of the Mackey formula

Proposition 7. Let G be a connected reductive linear algebraic group over a non-
Achimedean local field K of odd or zero characteristic. Let K′/K be a finite unram-
ified extension. Let P be a parabolic subgroup of G×Spec(K) Spec (K′) with reductive
quotient L. Suppose x0 ∈ I(G,K) is hyperspecial and that the image x′0 of x0 un-
der I(G,K) ↪→ I(G,K′) also lies in the image of I(L,K′) ↪→ I(G,K′). For every
equivariant perverse sheaf G on LK̄,

cres(Gx0
)OK̄

indGK̄
PK̄
G ∼= ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx′0
)OK̄
G,

where P x′0 is the smooth OK′-scheme introduced in Proposition 6.

Proof. The proof of Proposition 7 follows the argument for [6, Theorem 3], with
small adaptations, which we include here. We write x′0 for the image of x0 under
I(L,K)→ I(L,K′) and under I(G,K)→ I(G,K′). Consider the OK′ -schemes

Xx′0
:=
{

(g, h) ∈ Gx′0 ×Gx′0 | h
−1gh ∈ P x′0

}
∼= Gx′0 × P x′0

Y x′0 :=
{

(g, hP x′0) ∈ Gx′0 ×
(
Gx′0/P x′0

)
| h−1gh ∈ P x′0

}
.

By Proposition 6, these are smooth schemes and the morphism β
x′0

: Xx′0
→ Y x′0

defined by β
x′0

(g, h) := (g, hP x′0) is a P x′0-torsor. It also follows from Proposition 6
(with the field K replaced by K′) that the generic fibres of Xx′0

and Y x′0 are the
classical varieties

(Xx′0
)K′ ∼= XP :=

{
(g, h) ∈ GK′ ×GK′ | h−1gh ∈ P

} ∼= GK′ × P

(Y x′0)K′ ∼= YP :=
{

(g, hP ) ∈ GK′ × (GK′/P ) | h−1gh ∈ P
}

The generic fibre (β
x′0

)K′ of β
x′0

is the smooth principal P - fibration βP : XP → YP

defined by βP (g, h) := (g, hP ). Using Proposition 6 we find that the special fibres
(Xx′0

)Fq′ and (Y x′0)Fq′ are

(Xx′0
)Fq′ :=

{
(g, h) ∈ (Gx′0)Fq′ × (Gx′0)Fq′ | h

−1gh ∈ (P x′0)Fq′

}
∼= (Gx′0)Fq′ × (P x′0)Fq′

(Y x′0)Fq′ :=
{

(g, h(P x′0)Fq′ ) ∈ (Gx′0)Fq′ ×
(

(Gx′0)Fq′/(P x′0)Fq′

)
| h−1gh ∈ (P x′0)Fq′

}
and that the special fibre (β

x′0
)Fq′ of β

x′0
is the smooth principal fibration β(Px′0

)F
q′

:
X(Px′0

)F
q′
→ Y(Px′0

)F
q′

defined by β(Px′0
)F

q′
(g, h) := (g, h(P x′0)Fq′ ).

Again, with reference to Proposition 6, let πx′0 : P x′0 → Lx′0 be the extension of
the reductive quotient map πP : P → LK′ (existence and uniqueness is given by
the Extension Principle, as in [23, 2.3], for example) and define αx′0 : Xx′0

→ Lx′0
by αx′0(h, p) = πx′0(h−1gh). We remark that αx′0 is smooth. The generic fibre
of αx′0 is αP (g, h) = πP (h−1gh); the special fibre of αx′0 is defined likewise by
(αx′0)Fq′ (g, h) = (πx′0)Fq′ (h

−1gh).
Consider Figure 2, which consists entirely of cartesian squares. Let G be a char-

acter sheaf of LK̄. Using the definition of parabolic induction [10, 4] and notation
from [6, 1.5.1], we have

cres(Gx0
)OK̄

indGK̄
PK̄
G = RΨ(Gx′0

)OK̄
(pr1)! (βPK̄)# (αPK̄)∗ G.
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GK′ (Gx′0)K′
jG

x′0 // Gx′0 (Gx′0)Fq′

iG
x′0oo (Gx′0)Fq′

YP

pr1

OO

(Y x′0)K′

pr1

OO

jY
x′0 // Y x′0

pr1

OO

(Y x′0)Fq′

iY
x′0oo

pr1

OO

Y(Px′0
)F

q′

pr1

OO

XP

αP

��

βP

OO

(Xx′0
)K′

(β
x′0

)K′

OO

(αx0
)K

��

jX
x′0 // Xx′0

β
x′0

OO

αx′0

��

(Xx′0
)Fq′

iX
x′0oo

(β
x′0

)F
q′

OO

(αx′0
)F

q′

��

X(Px′0
)F

q′

α(P
x′0

)F
q′

��

β(P
x′0

)F
q′

OO

LK′ (Lx′0)K′
jL

x′0 //

��

Lx′0

��

(Lx′0)Fq′

iL
x′0oo

��

(Lx′0)Fq′

Spec (K′) // Spec (OK′) Spec (Fq′)oo

Figure 2. Parabolic induction and compact restriction

Since the generic fibre of αx′0 is αP and β
x′0

= βP , it follows that

RΨ(Gx0
)OK̄

(pr1)! (βPK̄)# (αPK̄)∗ G = RΨ(Gx0
)OK̄

(pr1)! ((β
x′0

)K̄)# (αx′0)K̄
∗ G.

The projection pr1 : Y x′0 → Gx′0 is proper – this is key! By proper base change,
there is a natural isomorphism

RΨ(Gx0
)OK̄

(pr1)! ((β
x′0

)K̄)# ((αx′0)K̄)∗ G ∼= (pr1)! RΨȲ x′0
((β

x′0
)K̄)# (αx′0)K̄

∗ G.

As explained in [6, §1.4.5], smooth base change provides a natural isomorphism

(pr1)! RΨȲ x′0
((β

x′0
)K̄)# ((αx′0)K̄)∗ G ∼= (pr1)! ((β

x′0
)F̄q

)# RΨX̄x′0
(αx′0)K̄

∗ G.

Recall that (β
x′0

)Fq′ = β(Px′0
)F

q′
and (αx′0)F̄q

= α(Px′0
)F̄q

. Use smooth base change
one more time:

(pr1)! ((β
x′0

)F̄q
)# RΨX̄x′0

(αx′0)K̄
∗ G ∼= (pr1)! (β(Px′0

)F̄q
)# (α(Px′0

)F̄q
)∗ RΨ(Lx′0

)OK̄
G.

To finish, we need only recall the definition of induction (again) and compact re-
striction for the hyperspecial model Lx′0 :

(pr1)! (β(Px′0
)F̄q

)# (α(Px′0
)F̄q

)∗ RΨ(Lx′0
)OK̄
G = ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx′0
)OK̄
G.

�

8. Nearby cycles of character sheaves

Proposition 8. Suppose G is a connected, reductive linear algebraic group over
non-Archimedean local field K that satisfies hypotheses H.1 and H.2. Let Gx0

be a
hyperspecial integral model for G. If F is a character sheaf of GK̄ then cres(Gx0

)OK̄
F

is a direct sum of character sheaves and thus a semisimple perverse sheaf of geo-
metric origin.
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Proof. Let F be an arbitrary character sheaf of GK̄. By [10, Theorem 4.4 (a)] (or
[15, Corollary 9.3.5]) there is a parabolic subgroup PK̄ with Levi subgroup LK̄ and
a cuspidal character sheaf G of LK̄ such that

(10) indGK̄
PK̄
G = ⊕

i
Fi ⊕F ,

where each Fi is a character sheaf of GK̄, and thus a simple perverse sheaf. Thus,

(11) cres(Gx0
)OK̄

indGK̄
PK̄
G = ⊕

i
cres(Gx0

)OK̄
Fi ⊕ cres(Gx0

)OK̄
F

By hypothesis H.2, and using [6, Theorem 2] if necessary, we may assume PK̄ =
P ×Spec(K′) Spec

(
K̄
)

where K′/K is finite unramified, and that the image x′0 of
x0 under I(G,K′) ↪→ I(G,K′) also lies in the image of I(L,K′) ↪→ I(G,K′). The
hypotheses to Proposition 7 are now met, so

(12) cres(Gx0
)OK̄

indGK̄
PK̄
G ∼= ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx′0
)OK̄
G.

By Proposition 5, cres(Lx′0
)OK̄
G is a direct sum of character sheaves of (Lx′0)F̄q

G.

By [10, Proposition 4.8 (b)] and (12), ind
(Gx0

)F̄q

(P ′x0
)F̄q

cres(Lx′0
)OK̄
G is a direct sum of

character sheaves. Thus, cres(Gx0
)OK̄

indGK̄
PK̄
G, is a direct sum of character sheaves.

It now follows from (11) that the simple consituents of cres(Gx0
)OK̄
F are character

sheaves. �

9. Main result

Theorem 1. Let G be a connected reductive linear algebraic group over K satisfying
hypotheses H.1 and H.2. Let K′/K be a finite unramified extension. Let P be a par-
abolic subgroup of G×Spec(K) Spec (K′) with reductive quotient L×Spec(K) Spec (K′)
(so L is a ‘twisted Levi subgroup’ of G). Let x be an element in I(G,K). If the star
of x ∈ I(G,K) contains a hyperspecial vertex then there is a finite set S ⊂ G(K′)
such that

cres(Gx)OK̄
indGK̄

PK̄
G ∼= ⊕

g∈S
ind

(Gx)red
F̄q

νG
x′

( gPx′ )F̄q

g
(

cres(Lx′g)OK̄
G
)
,

for every character sheaf G on LK̄. The finite set S ⊂ G(K′), the parabolic subgroups
νGx′

( gP x′)F̄q
of (Gx′)

red
F̄q

, the integral model Lx′g appearing in cres(Lx′g)OK̄
, and the

meaning of g(cres(Lx′g)OK̄
G), are all given in the proof.

Proof. Let x0 be a hyperspecial vertex in the star of x; then x0 ≤ x. Using
[6, Theorem 2], we may assume x0 ∈ I(L,K) ↪→ I(G,K). By [6, Theorem 1],
there is a parabolic subgroup Px0≤x of (Gx0

)red
Fq

= (Gx0
)Fq with Levi component

(Gx)red
Fq

such that

(13) cres(Gx)OK̄
indGK̄

PK̄
G ∼= res

(Gx0
)red

F̄q

(Px0≤x)F̄q
cres(Gx0

)OK̄
indGK̄

PK̄
G.

(The notation Px0≤x is potentially confusing in the present context: the subgroup
Px0≤x ⊆ (Gx0

)red
Fq

is determined by x0 and x in I(G,K) and is unrelated to the
subgroup P ⊂ GK′ .) Since x0 is hyperspecial, it follows from Proposition 7 that

(14) cres(Gx0
)OK̄

indGK̄
PK̄
G ∼= ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx0
)OK̄
G,
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where x′0 is the image of x0 under I(G,K) ↪→ I(G,K′). (Note that we have replaced
cres(Lx′0

)OK̄
G, as it appears in Proposition 7, with cres(Lx0

)OK̄
G since x0 ∈ I(L,K).)

Combining (13) and (14) gives

(15) cres(Gx)OK̄
indGK̄

PK̄
G ∼= res

(Gx0
)red

F̄q

(Px0≤x)F̄q
ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx0
)OK̄
G.

By Proposition 8 (which requires Hypothesis H.2) the perverse sheaf cres(Lx0
)OK̄
G is

a direct sum of character sheaves. Therefore, by the Mackey formula for character
sheaves [12, Proposition 15.2],
(16)

res
(Gx0

)F̄q

(Px0≤x)F̄q
ind

(Gx0
)F̄q

(Px′0
)F̄q

cres(Lx0
)OK̄
G

∼= ⊕
a∈S((Px0≤x)F̄q

,(Px′0
)F

q′
)
ind

(Gx)red
F̄q

(Gx)red
F̄q
∩( a(Px′0

)F̄q
)
a
(

res
(Lx0

)F̄q

(Lx0
)F̄q
∩((Px0≤x)F̄q

)acres(Lx0
)OK̄
G
)

where S((Px0≤x)F̄q
, (P x′0)Fq′ ) is a set of representatives a ∈ (Gx0

)F̄q
for double

cosets

(17) (Px0≤x)F̄q
(F̄q)\(Gx0

)F̄q
(F̄q)/(P x′0)F̄q

(F̄q)

such that (Lx0
)F̄q

and all ((P x′0)F̄q
)a := a−1(P x′0)F̄q

a contain a common maximal
torus of (Gx0

)F̄q
(not depending on a).

As explained in the proof of [6, Lemma 2], (Px0≤x)F̄q
is defined over Fq; in

fact, (Px0≤x)F̄q
= Px0≤x×Spec(Fq) Spec

(
F̄q
)

where Px0≤x is defined in[6, Lemma 2].
Together with the fact that PK̄ is defined over K′ (by hypothesis), it follows (as in
[7, Lemma 5.6 (ii)]) that the double coset space above actually coincides with

(18) Px0≤x(Fq′)\(Gx0
)Fq (Fq′)/(P x′0)Fq′ (Fq′).

The surjective group homomorphism Gx0
(OK′)→ (Gx0

)Fq
(Fq′) induces a bijection

(19) Gx(OK′)\Gx0
(OK′)/P x′0(OK′)→ Px0≤x(Fq′)\(Gx0

)Fq
(Fq′)/(P x′0)Fq′ (Fq′).

We will use this bijection to replace the summation set appearing in (16) with
a subset of G(K′) and to re-write the summands of (16) in the form promised
by Theorem 1. Let x′ be the image of x under I(G,K) ↪→ I(G,K′). For each
a ∈ S(Px0≤x, (P x0

)Fq′ ) there is some g ∈ Gx0
(OK′) such that:

(i) the image of g under the surjective group homomorphism Gx0
(OK′) →

(Gx0
)Fq

(Fq′) is a;
(ii) the reductive quotient (Lx′g)

red
Fq

of the special fibre of the schematic closure
Lx′g of L in Gx′g :=Gg−1x is (Lx0

)Fq
∩ (Px0≤x)a; and

(iii) the image νGx′
( gP x′)Fq

of the special fibre of gP x′ under the map

νGx′
: (Gx′)Fq → (Gx′)

red
Fq

is the Levi component of the parabolic subgroup (Gx′)
red
Fq
∩ ( a(P x′0)Fq

).

Let S be a set of elements g so chosen. The double coset of g ∈ S is uniquely
determined by the corresponding a ∈ S(Px0≤x, (P x′0)Fq′ ).

We now use [6, Theorem 1] to re-write

(20) res
(Lx0

)F̄q

(Lx0
)F̄q
∩(Px0≤x)F̄q

acres(Lx0
)OK̄
G = cres(Lx′g)OK̄

G.
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Because of the relationship between g and a articulated above, we also have

(21) a(cres(Lx′g)OK̄
G) = g(cres(Lx′g)OK̄

G) = ((m(g−1)
x
)F̄q

)∗cres(Lx′g)OK̄
G,

where (m(g−1)
x
)F̄q

is defined in [6, §2.3], and

(22) ind
(Gx)red

F̄q

(Gx)red
F̄q
∩( a(Px′0

)F̄q
)

= ind
(Gx)red

F̄q

νG
x′

( gPx′ )F̄q
.

(Observe that Therefore, (Gx)red
F̄q

= (Gx′)
red
F̄q

because K′/K is unramified.) There-
fore,
(23)

⊕
a∈S(Px0≤x,(Px′0

)F
q′

)
ind

(Gx)red
F̄q

(Gx)red
F̄q
∩( a(Px′0

)F̄q
)
a
(

res
(Lx0

)F̄q

(Lx0
)F̄q
∩((Px0≤x)F̄q

)acres(Lx0
)OK̄
G
)

= ⊕
g∈S

ind
(Gx)red

F̄q

νG
x′

( gPx′ )F̄q

g
(

cres(Lx′g)OK̄
G
)
,

thus completing the proof of Theorem 1. �

Remark 3. It was not necessary to impose Hypothesis H.0 on G at the beginning
of the statement of Theorem 1 because later we insisted that the star of x contain a
hyperspecial vertex, which has the effect of making Hypothesis H.0 true for G. This
is also the reason Hypothesis H.0 does not appear explicitly in Corollary 1.

Corollary 1. Let G be a connected reductive linear algebraic group over K satis-
fying Hypotheses H.1 and H.2. Let T ⊂ G be a maximal torus that splits over a
tamely ramified extension K′/K. Suppose x ∈ I(G,K). If the star of x contains a
hyperspecial vertex then there is a finite set S ⊂ G(K′) such that

cres(Gx)OK̄
K̄Le
∼= ⊕

g∈S
K̄

g(RΨT
x′g
L)

e [dim (Gx)red
Fq
− dimGK̄/TK̄],

for every Kummer local system L on TK̄, where K̄Le is the complex defined in [12,

§12.1] (and likewise, K̄
g(RΨT

x′g
L)

e ).

Proof. Apply Theorem 1 to the case when P = B is a Borel subgroup of G×Spec(K)

Spec (K′) with Levi factor T ×Spec(K) Spec (K′). Use the fact that every character
sheaf of TK̄ takes the form L[dimT ] for some Kummer local system L on TK̄ and
K̄Le [dimG] = indGK̄

BK̄
L[dimT ]. Also use the fact that the smooth integral model

(T x′g)OK̄ (as defined in the proof of Theorem 1) is hyperspecial in the sense that
(T x′g)F̄q

is reductive, so cres(Tx′g)OK̄
L = RΨTx′g

L and dim (T x′g)F̄q
= dimTK̄ for

each g ∈ S. �

10. The full Mackey

We believe Theorem 1 is also true without the condition on x ∈ I(G,K) (that
its star contains a hyperspecial vertex). Conjecture 1, below, is the topic of current
work.

Conjecture 1 (Mackey formula for compact restriction of character sheaves).
Let G be a connected reductive linear algebraic group over K satisfying the Hypothe-
ses H.1 and H.2. Let K′/K be a finite, tamely ramified extension. Let P be a para-
bolic subgroup of G ×Spec(K) Spec (K′) with reductive quotient L ×Spec(K) Spec (K′)
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(so L is a ‘twisted Levi subgroup’ of G). Let x be an element in the Bruhat-Tits
building I(G,K). There is a finite set S ⊂ G(K′) such that

cres(Gx)OK̄
indGK̄

PK̄
G ∼= ⊕

g∈S
ind

(Gx)red
F̄q

νG
x′

( gPx′ )F̄q

g
(

cres(Lx′g)OK̄
G
)
,

for every character sheaf G on LK̄. The finite set S ⊂ G(K′), the parabolic subgroups
νGx′

( gP x′)F̄q
of (Gx)red

F̄q
, and the integral model Lx′g appearing in cres(Lx′g)OK̄

, are
all as they appear in the proof of Theorem 1.

In this paper we have proved Conjecture 1 in the case that the star of x contains
a hyperspecial vertex. Special linear groups and unitary groups, for example, have
the property that for every x ∈ I(G,K) there is some hyperspecial vertex contained
in the star of x, so Theorem 1 can be used to determine cres(Gx)OK̄

indGK̄
PK̄
G for every

x ∈ I(G,K) in such cases. The smallest example of a group that does enjoy this
property (that for every x ∈ I(G,K) there is some hyperspecial vertex contained
in the star of x) is G = Sp(4), precisely because the building for Sp(4,K) contains
non-hyperspecial vertices. In order to determine cres(Gx)OK̄

indGK̄
PK̄
G in such cases,

other techniques are required – these are the topic of work in progress.

Appendix A. Toric OK-schemes

All schemes considered here will be separated schemes of finite type over OK.
In particular, Gm denotes the group scheme Gm,OK = Spec

(
OK[t, t−1]

)
and A1

denotes A1
OK

= Spec (OK[t]). Let b : Gm → A1 be the natural inclusion map. Let
A be a finitely generated OK-algebra, and let X = Spec (A).

Specifying a group action µ : Gm ×X → X is equivalent to specifying an OK-
module decomposition A =

⊕
n∈Z An that makes A into a Z-graded OK-algebra.

To see this, consider the coaction map µ] : A → OK[t, t−1] ⊗ A, and let An =
(µ])−1(OKt

n ⊗A). The claim follows from basic properties of µ].
Suppose now that X is endowed with a Gm-action. Let I ⊂ A be the ideal

generated by OK-submodule
⊕

n 6=0An, and set XGm = Spec (A)/I. Let

i : XGm → X

denote the corresponding closed embedding. Z is the scheme of Gm-fixed points.
On the other hand, set X//Gm = Spec (A)0. The corresponding map

π : X → X//Gm

is called the invariant-theoretic quotient map. Let X be a scheme with a Gm-
action µ : Gm × X → X. This action is said to be contracting if there is a map
µ̄ : A1 ×X → X such that the following diagram commutes:

Gm ×X
µ //

b× id %%LLLLLLLLLL X

A1 ×X
µ̄

;;wwwwwwwww

For an affine scheme X = Spec (A), an action µ : Gm×X → X is contracting if and
only if in the corresponding grading on A, we have An = 0 for n < 0. When this
holds, the map µ̄ : A1 ×X → X is uniquely determined, and there is a canonical
isomorphism XGm ∼= X//Gm.
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