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Goals

Considering modular representation theory:

Fix an algebraically closed field k of characteristic p > 0

Goals:

Talk about a variety of connections/relationships between
cohomology/extensions for these various algebraic structures.

Talk about a number of computational problems, particular
ones where the answers remain incomplete.

Demonstrate how those connections can be used toward
making computations.
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Outline

Part 1:

Start at the beginning . . .

Structures of interest: algebraic groups, Lie algebras, and
finite groups of Lie type

Modules

Cohomology and Extensions

Some basic tools

Connections, connections, and more connections

A few computations

Part 2:

Computations and more computations
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Caveats!

A few general caveats:

Certainly not exhaustive!

Apologies for missed results.

A “coincidence”: the problems I am most familiar with and
find interesting, . . . often happen to be the ones I have worked
on

A couple technical caveats:

There will be few comments on characteristic zero fields.

Not always precise with statements of results.

Terminology with multiple meanings (e.g., restricted and
induction)
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Algebraic Groups

G - an algebraic group scheme over k

Functor from (commutative) k-algebras to groups

Coordinate algebra: k[G ]; commutative Hopf algebra

G (A) = Homk−alg(k[G ],A), for a k-algebra A

Distribution algebra (or hyperalgebra): Dist(G ) ⊂ k[G ]∗

Examples: Here A is a k-algebra

The general linear group - GLn:
GLn(A) = {n × n invertible matrices with entries in A}
The Ga: Ga(A) = (A,+)

k[Ga] = k[t] - one variable polynomial ring

Gm: Gm(A) = (A×, ∗), k[Gm] = k[t, t−1]

Christopher P. Bendel Cohomology - Part 1



Lie Algebras

g = Lie(G ) - The Lie algebra of G over k

A p-restricted Lie algebra: (−)[p] : g→ g

Examples:

Lie(GLn) = gln = {n × n matrices over k}
[B,C ] = BC − CB
B [p] = Bp (matrix power)

Lie(Ga) = k with trivial bracket and [p]-map
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Enveloping Algebras

U(g) - the universal enveloping algebra of g

In characteristic zero, U(g) ∼= Dist(G )

The p-restricted case:

u(g) := U(g)/(xp − x [p]) - the restricted enveloping algebra

Finite-dimensional, with dimension pdim(g)

There is an injection u(g) ↪→ Dist(G )
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Frobenius Kernels

The Frobenius morphism of schemes: F : G → G

Gr := ker F r - scheme theoretic kernel

Gr is a normal subgroup scheme of G

G1 ⊂ G2 ⊂ Gr ⊂ · · · ⊂ G

k[Gr ] is finite-dimensional and local

Examples:

F : GLn → GLn by F ((aij)) = (apij)

F : Ga → Ga by F (a) = ap

Comorphism F ∗ : k[Ga]→ k[Ga] by F (t) = tp

k[Ga,r ] = k[t]/(tp
r

)
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Connecting G1 and g

Elementary Example:

k[Ga,1] ∼= k[t]/(tp)

u(Ga) = U(Ga)/(xp − x [p]) = k[x ]/(xp)

General Fact:

k[G1]∗ ∼= u(g) as Hopf algebras
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Finite Groups

Recall Frobenius: F : G → G

G (Fp) := GF or more generally

G (Fq) := GF r
, q = pr

kG (Fq) - the group algebra

There exist ”twisted” versions as well.

GLn(Fp) - n × n invertible matrices with entries in Fp

Ga(Fp) = (Fp,+)

Gr (Fp) = 1
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Representations - Algebraic Groups

General Assumption (any context): A module M will be a
finite-dimensional vector space over k

Algebraic group G : a rational G -module M

via an action of G on M

via a group scheme homomorphism G → GL(M)

as a co-module for k[G ]

Gives rise to a Dist(G )-module
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Representations - Lie algebras

Lie algebra g:

Ordinary module: a U(g)-module

or via an appropriate g-action

Restricted module: a u(g)-module

g-action that respects the [p]-mapping

Any G -module can be considered as a restricted g-module.

Note: Study of non-restricted representations for a p-restricted Lie
algebra . . .
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Representations - Frobenius kernels

Frobenius kernel Gr :

As an algebraic group

As a k[Gr ]∗-module

Any G -module is a Gr -module via restriction

G1-modules are equivalent to restricted g-modules
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Representations - Finite groups

Finite groups: G (Fq)

via an ordinary group homomorphism G (Fq)→ GL(M)

as a kG (Fq)-module

the “defining characteristic” case

Again, any G -module is a G (Fq)-module via restriction

Note: Over characteristic zero, kG (Fq)-modules are semisimple.

Can also consider the “non-defining characteristic” case:
kG (Fq)-modules where q = pr and the characteristic of k is prime
but not p. Might or might not be semisimple . . .
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New Modules from Old

M,N - (finite-dimensional) G -modules

Direct Sums: M ⊕ N

Tensor Products: M ⊗ N

Dual Modules: M∗ := Homk(M, k)

Frobenius Twists: r ≥ 1, F r : G → G

M(r) := M with g ∈ G acting via F r (g)
If N ∼= M(r), we may write N(−r) for M

Induced Modules: indG ′
G (M) for G ⊂ G ′

Restrictions of twisted G -modules:

Over Gr , M(r) is trivial - i.e., k⊕ dimM

Over G (Fq), M(r) ∼= M
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Cohomology

M - (finite-dimensional) G -module

Hi (G ,M):

ith right derived functor of the fixed point functor (−)G on M

ith right derived functor of HomG (k ,−) on M

Hi (G ,M) ∼= ExtiG (k ,M)

via the Hochschild complex C •(G ,M):
Cn(G ,M) = M ⊗

⊗n k[G ]

Christopher P. Bendel Cohomology - Part 1



Cohomology - Ring Structure

H•(G , k) :=
⊕
i≥0

Hi (G , k) has a ring structure via the cup product

via the Hochschild complex or Yoneda splice (using
extensions)

graded commutative: for a ∈ Hi and b ∈ H j , ab = (−1)ijba

commutative for p = 2
H2•(G , k) is commutative
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Extensions

M,N - finite-dimensional G -modules

ExtiG (N,M):

ith right derived functor of HomG (N,−) on M

ith right derived functor of HomG (−,M) on N; if enough
projectives exist

Equivalence classes of extensions:

0→ M → C1 → · · · → Ci → N → 0

ExtiG (N,M) ∼= ExtiG (k ,N∗ ⊗M) ∼= Hi (G ,N∗ ⊗M)
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Cohomology for Gr and G (Fq)

Defined similarly

For Gr : can define via k[Gr ]∗

For G (Fq):

ordinary group cohomology

can define via kG (Fq)

can use the bar resolution
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Cohomology for Lie algebras

Warning: Need to be careful about context here.

Restricted cohomology: Hi (u(g),M) ∼= Hi (G1, k)

Cohomology of the restricted enveloping algebra or,
equivalently, the first Frobenius kernel

Ordinary cohomology: Hi (g,M) = Hi (U(g),M)

Cohomology of the (full) enveloping algebra

Can be computed using the cohomology of a complex
M ⊗ Λ•(g∗)

Hi (g,M) = 0 for i > dim g
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Cohomology Examples

For Gm: (semi-simplicity)

Hi (Gm,M) = 0 for i > 0 for any Gm-module M

For Ga:

p = 2, H•(Ga, k) = k[λ1, λ2, . . . ], with λi ∈ H1

p > 2, H•(Ga, k) = Λ•(λ1, λ2, . . . )⊗ k[x1, x2, . . . ], with
λi ∈ H1, xi ∈ H2

characteristic zero, H•(Ga, k) = Λ•(k)

p = 2, H•(Ga,r , k) = k[λ1, λ2, . . . , λr ], with λi ∈ H1

p > 2, H•(Ga,r , k) = Λ•(λ1, λ2, . . . , λr )⊗ k[x1, x2, . . . , xr ],
with λi ∈ H1, xi ∈ H2

Note: The cohomology of Ga,r is the same as that of the
elementary abelian group (Z/p)r .

Christopher P. Bendel Cohomology - Part 1



Cohomology Examples

For Gm: (semi-simplicity)

Hi (Gm,M) = 0 for i > 0 for any Gm-module M

For Ga:

p = 2, H•(Ga, k) = k[λ1, λ2, . . . ], with λi ∈ H1

p > 2, H•(Ga, k) = Λ•(λ1, λ2, . . . )⊗ k[x1, x2, . . . ], with
λi ∈ H1, xi ∈ H2

characteristic zero, H•(Ga, k) = Λ•(k)

p = 2, H•(Ga,r , k) = k[λ1, λ2, . . . , λr ], with λi ∈ H1

p > 2, H•(Ga,r , k) = Λ•(λ1, λ2, . . . , λr )⊗ k[x1, x2, . . . , xr ],
with λi ∈ H1, xi ∈ H2

Note: The cohomology of Ga,r is the same as that of the
elementary abelian group (Z/p)r .

Christopher P. Bendel Cohomology - Part 1



Reductive Groups

The radical of G : R(G ) - largest connected normal solvable
subgroup of G

If the unipotent radical of R(G ) is trivial, we say G is reductive.

e.g., GLn

If R(G ) is trivial, we say G is semisimple.

e.g., SLn

For simplicity, generally assume G is semisimple with an irreducible
root system and simply connected.
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Classic Examples

Classic Matrix Examples:

Type An: SLn+1

Type Bn: SO2n+1

Type Cn: Sp2n

Type Dn: SO2n

and the exceptional groups in types E6, E7, E8, F4, and G2.
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Root Systems

T : maximal torus (diagonalizable subgroup isomorphic to
Gn

m) of rank n in G

e.g., the diagonal matrices in SLn+1

Φ: irreducible root system associated to (G ,T )

weights for the adjoint action of T on g
Φ+, Φ−: positive and negative roots, respectively
S = {α1, . . . , αn} - simple roots

B = T n U: a Borel subgroup associated to the negative
roots

U: product of negative root subgroups
e.g., the lower triangular matrices in SLn+1

W - the Weyl group generated by simple reflections
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Root System Geometry

E: the Euclidean space spanned by Φ with inner product 〈 , 〉
The weight lattice: X (T ) = Zω1 ⊕ · · · ⊕ Zωn, where the
fundamental dominant weights ωi ∈ E are defined by
〈ωi , α

∨
j 〉 = δij , 1 ≤ i , j ≤ n.

coroots: α∨ = 2α/〈α, α〉
The dominant weights: X (T )+ := {λ ∈ X (T ) : 〈λ, α∨〉 ≥
0 ∀ α ∈ S} = Nω1 ⊕ · · · ⊕ Nωn

The pr -restricted weights:
Xr (T ) := {λ ∈ X (T ) : 0 ≤ 〈λ, α∨〉 < pr ∀ α ∈ S}

The Weyl weight: ρ =
1

2

∑
α∈Φ+

α

The maximal short root: α0
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The Coxeter Number

h := 〈ρ, α∨0 〉+ 1

Φ h

An n + 1
Bn 2n
Cn 2n
Dn 2n − 2
E6 12
E7 18
E8 30
F4 12
G2 6

h tends to separate “small” primes from “large” primes
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Key G -Modules

For λ ∈ X (T )+:

Induced modules: H0(λ) := indG
B (λ)

On the right, λ denotes the 1-dim module kλ with U acting
trivially and T by λ

Weyl modules: V (λ) := H0(−w0(λ))∗

w0 denotes the longest word in W

Simple modules: L(λ) - arise as

the socle of H0(λ)
the head of V (λ)

In characteristic zero, H0(λ) and V (λ) are simple.
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Steinberg’s Tensor Product Theorem

Given λ ∈ X (T )+, we may write it as

λ = λ0 + pλ1 + p2λ2 + · · ·+ pmλm

where λi ∈ X1(T ). Then

L(λ) ∼= L(λ0)⊗ L(λ1)(1) ⊗ L(λ2)(2) ⊗ · · · ⊗ L(λm)(m)
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Restricting to Gr or G (Fq)

Question: What happens to a simple G -module L(λ) upon
restriction to Gr or G (Fq)?

A first connection between Gr and G (Fq):

In either case, the set of irreducible modules is precisely

{L(λ) : λ ∈ Xr (T )}.

That is, the simples corresponding to the pr -restricted weights.
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Goal Revisited

Study cohomology and extensions over

G , g, Gr , G (Fq)

B, b, Br , B(Fq)

U, u, Ur , U(Fq)

Main modules of interest:

k, L(λ), H0(λ), V (λ) for λ ∈ X (T )+
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Underlying Theme

Identify relationships between cohomology groups for these various
structures.

Apply computations from one realm to make computations in
another.

A fundamental question: determine whether a cohomology group
is non-zero.
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Connections: Rational Stability for Twists

M - a G -module

Recall the twisted module M(r)

As r increases, the cohomology stabilizes. i.e., ∃ R, depending on i
such that, for r ≥ R,

Hi (G ,M(r)) ∼= Hi (G ,M(r+1))

Cline-Parshall-Scott-van der Kallen ’77

B-Nakano-Pillen ’14
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Connections: G and B

M, N - G -modules, i ≥ 0

ExtiG (M,N) ∼= ExtiB(M,N)

Hi (G ,M) ∼= Hi (B,M)

Also holds for a standard parabolic between B and G

Uses Kempf’s vanishing theorem:

R i indG
B (λ) = 0 for i > 0, λ ∈ X (T )+

Cline-Parshall-Scott-van der Kallen ’77
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Connections: B and U

M - B-module, i ≥ 0

Hi (B,M) ∼= (Hi (U,M))T

Recall: B = T n U

The power of spectral sequences . . .
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The Lyndon-Hochschild-Serre Spectral Sequence

Applied to U E B:

Em,n
2 = Hm(B/U,Hn(U,M))⇒ Hm+n(B,M)

The abutment (right-hand side) is a “limit” of the left-hand side
after a sequence of maps:

d2 : Em,n → Em+2,n−1

d3 : Em,n → Em+3,n−2 . . .
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The E2-page

This is a first quadrant spectral sequence

. . .

H0(B/U,H2(U,M)) H1(B/U,H2(U,M)) H2(B/U,H2(U,M)) ...

H0(B/U,H1(U,M)) H1(B/U,H1(U,M)) H2(B/U,H1(U,M)) ...

H0(B/U,H0(U,M)) H1(B/U,H0(U,M)) H2(B/U,H0(U,M)) ...

Since B/U ∼= T (a torus), H i (B/U,H j(U,M)) = 0 for all i > 0
and j ≥ 0

So the sequence really looks like . . .
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The real E2-page

. . .

H0(B/U,H2(U,M)) 0 0 0 0 . . .

H0(B/U,H1(U,M)) 0 0 0 0 . . .

H0(B/U,H0(U,M)) 0 0 0 0 . . .

And so all the differentials vanish giving

Hn(B,M) = H0+n(B,M) = H0(B/U,Hn(U,M))

= H0(T ,Hn(U,M)) = Hn(U,M)T
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Connections: Algebraic Groups and Frobenius Kernels

Recall: there is a chain of subgroups

G1 ⊂ G2 ⊂ · · · ⊂ G

For any G -module M, the inclusion Gr ↪→ G induces a map in
cohomology: Hi (G ,M)→ Hi (Gr ,M)

For all i ≥ 0,

Hi (G ,M) ∼= lim
←−

Hi (Gr ,M), any G -module M

Hi (B,M) ∼= lim
←−

Hi (Br ,M), any B-module M

Again, holds for parabolics more generally.

Cline-Parshall-Scott ’80, Friedlander-Parshall ’87, van der
Kallen (per Jantzen ’03)
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Connections: Algebraic Groups and Frobenius
Kernels/Finite Groups

By Generalized Frobenius Reciprocity,

Hi (Gr ,M) ∼= Hi (G , indG
Gr

(M)), for a Gr -module M

Hi (G (Fq),M) ∼= Hi (G , indG
G(Fq)(M)), for a G (Fq)-module M

But these G -modules are infinite-dimensional.

Yet still useful. More on that coming . . .
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Connections: Generic Cohomology

For a G -module M, the embedding G (Fq) ↪→ G induces a
restriction map in cohomology:

Hi (G ,M)→ Hi (G (Fq),M)

If we twist the module M and allow r in q = pr to grow, the map
is an isomorphism.

For sufficiently large r and s (depending on i and . . . ),

Hi (G ,M(s)) ∼= Hi (G (Fq),M(s)) ∼= Hi (G (Fq),M).

i.e., As r increases, Hi (G (Fq),M) stabilizes to a “generic” value

Cline-Parshall-Scott-van der Kallen ’77

B-Nakano-Pillen ’14
Questions/Problems:

Identifying sharp bounds for stabilization
Computing generic cohomology
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Direct G to G (Fq) Connections

Andersen ’84: λ, µ ∈ Xr (T ) with 〈λ+ µ, α∨0 〉 < pr − pr−1 − 1,

Ext1
G (L(λ), L(µ)) ∼= Ext1

G(Fq)(L(λ), L(µ))

I.e., λ+ µ is not too large relative to p

Taking λ = 0, gives a condition for

H1(G , L(µ)) ∼= H1(G (Fq), L(µ))
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Induction and Truncation

Recall: ExtiG(Fq)(L(λ), L(µ)) ∼= ExtiG (L(λ), L(µ)⊗ indG
G(Fq)(k))

B-Nakano-Pillen ’01, ’02, ’04: Truncate indG
G(Fq)(k) by taking the

largest submodule whose composition factors have highest weights
that are “small” . . .

For p ≥ 3(h − 1),

Ext1
G(Fq)(L(λ), L(µ)) ∼=

⊕
ν∈Γ

Ext1
G (L(λ)⊗ L(ν)(r), L(µ)⊗ L(ν)).

Γ := {ν ∈ X (T )+ : 〈ν, α∨0 〉 < h}
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More G to G (Fq)-connections

If the right-hand Ext-groups vanish for ν 6= 0, then

Ext1
G(Fq)(L(λ), L(µ)) ∼= Ext1

G (L(λ), L(µ))

For example: λ = λ0 + pλ1 + · · · pr−1λr−1,
µ = µ0 + pµ1 + · · ·+ pr−1µr−1

Holds if λr−1 = µr−1

E.g, if λ = µ

Fix λ and µ, can let r increase until true

Question: What about small primes?

Can get some of this assuming pr is sufficiently large, with p
“small” (e.g., B-Nakano-Pillen ’06).
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Shifting Weights

Even if Ext1
G(Fq)(L(λ), L(µ)) 6∼= Ext1

G (L(λ), L(µ)), we can “shift”
weights . . .

B-Nakano-Pillen ’02, ’06: Still p ≥ 3(h − 1) (or pr large) .

For r ≥ 3, given λ, µ ∈ Xr (T ), there exist λ̃, µ̃ ∈ Xr (T ) such that

Ext1
G(Fq)(L(λ), L(µ)) ∼= Ext1

G (L(λ̃), L(µ̃))

Corollary:

max{dimk Ext1
G(Fq)(L(λ), L(µ)) | λ, µ ∈ Xr (T )}

= max{dimk Ext1
G (L(λ), L(µ)) | λ, µ ∈ Xr (T )}.
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Generic Cohomology Returns

Parshall-Scott-Stewart ’13: For sufficiently large r (depending on
m and the root system), given λ ∈ Xr (T ), there exists λ̃ ∈ Xr (T )
such that

Hm(G (Fq), L(λ)) ∼= Hm(G , L(λ̃))

i.e., can get generic cohomology without the twisting on the right.

Note: there is no condition on the prime here.
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Connecting G and Gr

Can use LHS for Gr E G . . .

Using indG
Gr

(and Andersen ’84), one can get (B-Nakano-Pillen ’02)
a similar sort of result for p ≥ 3(h − 1):

Ext1
Gr

(L(λ), L(µ)) ∼= Ext1
G (L(λ), L(µ))⊕ (Remainder Term)

Example: for r ≥ 2
λ = λ0 + pλ1 + · · · pr−1λr−1 = λ̇+ pr−1λr−1,
µ = µ0 + pµ1 + · · · pr−1µr−1 = µ̇+ pr−1µr−1

If λ̇ 6= µ̇, then

Ext1
Gr

(L(λ), L(µ)) ∼= Ext1
G (L(λ), L(µ))
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Connections: Frobenius Kernels and Lie Algebras

Let G be arbitrary for this slide and M - Gr -module.

The May spectral sequence leads to spectral sequences:

E •,•1 = S(g∗)⊗ S(g∗)(1)⊗ · · · ⊗ S(g∗)(r−1)⊗M ⇒ H•(Gr ,M),
p = 2

E •,•1 = Λ(g∗)⊗ Λ(g∗)(1) ⊗ · · · ⊗ Λ(g∗)(r−1) ⊗ S(g∗)(1) ⊗
S(g∗)(2) ⊗ · · · ⊗ S(g∗)(r) ⊗M ⇒ H•(Gr ,M), p > 2.

∃ G -versions also

The p > 2 case may be refined to (Friedlander-Parshall ’86):

E 2i ,j
2 = S i (g∗)(1) ⊗ Hj(g,M)⇒ H2i+j(G1,M)
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Until Tomorrow

To be continued . . .
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