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Goals

Considering modular representation theory:

Fix an algebraically closed field k of characteristic p > 0

Goals:

e Talk about a variety of connections/relationships between
cohomology/extensions for these various algebraic structures.

@ Talk about a number of computational problems, particular
ones where the answers remain incomplete.

@ Demonstrate how those connections can be used toward
making computations.
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Part 1:
@ Start at the beginning . ..
@ Structures of interest: algebraic groups, Lie algebras, and
finite groups of Lie type
Modules
Cohomology and Extensions
Some basic tools

Connections, connections, and more connections

e 6 6 o o

A few computations

Part 2:

@ Computations and more computations
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A few general caveats:

@ Certainly not exhaustive!
@ Apologies for missed results.

@ A “coincidence”: the problems | am most familiar with and
find interesting, ... often happen to be the ones | have worked
on

A couple technical caveats:

@ There will be few comments on characteristic zero fields.
@ Not always precise with statements of results.

e Terminology with multiple meanings (e.g., restricted and
induction)
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Algebraic Groups

G - an algebraic group scheme over k

e Functor from (commutative) k-algebras to groups
e Coordinate algebra: k[G]; commutative Hopf algebra
o G(A) = Homy_aig(k[G], A), for a k-algebra A
e Distribution algebra (or hyperalgebra): Dist(G) C k[G]*

Examples: Here A is a k-algebra

@ The general linear group - GL:
GLp(A) = {n x n invertible matrices with entries in A}
e The G,: G,(A) = (A, +)
o k[G,] = k[t] - one variable polynomial ring
o Gm: Gp(A) = (A%, %), k[G,] = k[t, t71]
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Lie Algebras

g = Lie(G) - The Lie algebra of G over k
o A p-restricted Lie algebra: (=)l : g — g

Examples:

e Lie(GL,) = gl, = {n x n matrices over k}
o [B,C]=BC - CB
o BIPl = BP (matrix power)

o Lie(G,) = k with trivial bracket and [p]-map
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Enveloping Algebras

U(g) - the universal enveloping algebra of g
@ In characteristic zero, U(g) = Dist(G)

The p-restricted case:

u(g) := U(g)/(xP — xIP]) - the restricted enveloping algebra
o Finite-dimensional, with dimension pdim(®)

@ There is an injection u(g) < Dist(G)
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Frobenius Kernels

The Frobenius morphism of schemes: F: G — G

G, := ker F" - scheme theoretic kernel
@ G, is a normal subgroup scheme of G
G CGCGC---CG
@ k[G,] is finite-dimensional and local

Examples:
® F:GL,— GL, by F((aj)) = (aZ-)
o F:G,— G, by F(a) =a”

o Comorphism F* : k[G,] — k[G,] by F(t) = t?
o K[Ga,] = K[t]/(t")
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Connecting G; and g

Elementary Example:
° k[Gaa] = K[t]/(tP)
o u(Ga) = U(G,)/(xP — xIPl) = k[x]/(xP)

General Fact:

k[G1]* = u(g) as Hopf algebras
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Recall Frobenius: F: G — G

o G(Fp) := GF or more generally
o G(F,) =G, g=p"
o kG(Fg) - the group algebra

There exist "twisted” versions as well.

e GLy(FFp) - n x n invertible matrices with entries in F,
o Gy(Fy,) = (Fp, +)
o G (Fp)=1
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Representations - Algebraic Groups

General Assumption (any context): A module M will be a
finite-dimensional vector space over k

Algebraic group G: a rational G-module M
@ via an action of G on M
@ via a group scheme homomorphism G — GL(M)
@ as a co-module for k[G]

@ Gives rise to a Dist(G)-module
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Representations - Lie algebras

Lie algebra g:
@ Ordinary module: a U(g)-module
@ or via an appropriate g-action
@ Restricted module: a u(g)-module
e g-action that respects the [p]-mapping

Any G-module can be considered as a restricted g-module.

Note: Study of non-restricted representations for a p-restricted Lie
algebra ...
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Representations - Frobenius kernels

Frobenius kernel G,:
@ As an algebraic group
@ As a k[G,]*-module

@ Any G-module is a G,-module via restriction

Gi-modules are equivalent to restricted g-modules
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Representations - Finite groups

Finite groups: G(F)
@ via an ordinary group homomorphism G(F,) — GL(M)

e as a kG(FFy)-module
e the “defining characteristic” case

e Again, any G-module is a G(IF4)-module via restriction

Note: Over characteristic zero, kG(Fq)-modules are semisimple.

Can also consider the “non-defining characteristic” case:
kG(F4)-modules where g = p" and the characteristic of k is prime
but not p. Might or might not be semisimple ...
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New Modules from Old

M, N - (finite-dimensional) G-modules
@ Direct Sums: Mo N
@ Tensor Products: M ® N
e Dual Modules: M* := Hom (M, k)
@ Frobenius Twists: r>1, F': G — G

o M) := M with g € G acting via F'(g)
o If N =M, we may write NG for M

o Induced Modules: indE (M) for G C G’

Restrictions of twisted G-modules:
e Over G,, M(") is trivial - i.e., k®dimM
o Over G(F,), M) = M
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Cohomology

M - (finite-dimensional) G-module
H(G, M):
o ith right derived functor of the fixed point functor (—)¢ on M
@ ith right derived functor of Homg(k, —) on M
o H(G, M) = Ext’s(k, M)
@ via the Hochschild complex C*(G, M):
C"(G,M) =M Q" k|[G]
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Cohomology - Ring Structure

H*(G, k) := @ H'(G, k) has a ring structure via the cup product
i>0
@ via the Hochschild complex or Yoneda splice (using
extensions)
o graded commutative: for a € H and b€ H/, ab= (—1)¥ba

e commutative for p = 2
o H?*(G, k) is commutative
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Extensions

M, N - finite-dimensional G-modules
Extl-(N, M):
@ ith right derived functor of Homg(N,—) on M

@ ith right derived functor of Homg(—, M) on N; if enough
projectives exist

@ Equivalence classes of extensions:
O M—-CG—--—CG—-N—=0

o Exti-(N, M) = Extiz(k, N* @ M) = H/(G, N* @ M)
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Cohomology for G, and G(F)

Defined similarly
For G,: can define via k[G,]*

For G(Fq):
@ ordinary group cohomology
e can define via kG(Fq)

@ can use the bar resolution
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Cohomology for Lie algebras

Warning: Need to be careful about context here.

Restricted cohomology: H'(u(g), M) = H(Gy, k)

@ Cohomology of the restricted enveloping algebra or,
equivalently, the first Frobenius kernel

Ordinary cohomology: H'(g, M) = H(U(g), M)
e Cohomology of the (full) enveloping algebra
@ Can be computed using the cohomology of a complex
M@ N*(g7)
o Hi(g,M) =0 for i >dimg
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Cohomology Examples

For Gm: (semi-simplicity)
e H(G,,, M) =0 for i > 0 for any G,-module M
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Cohomology Examples

For Gm: (semi-simplicity)
e H(G,,, M) =0 for i > 0 for any G,-module M

For G,:
o p=2, H*G,, k) = k[\1, Mo, ...], with \; € H!
e p>2, H.(Ga, k) = /\.()\1,)\2, R ) & k[Xl,XQ, .. .], with
)\,‘ S Hl, X; € H2
e characteristic zero, H*(G,, k) = A*(k)

o p=2, H* (G, k) = k[A1, M2, ..., A/, with \; € H?
e p>2, H.(Ga,ra k) = /\.()\1,)\2, .. .,)\,) & /([Xl,XQ7 e ,X,»],
with \; € HY, x; € H?

Note: The cohomology of G, is the same as that of the
elementary abelian group (Z/p)".
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Reductive Groups

The radical of G: R(G) - largest connected normal solvable
subgroup of G

If the unipotent radical of R(G) is trivial, we say G is reductive.
e eg., GL,

If R(G) is trivial, we say G is semisimple.

e eg., SL,

For simplicity, generally assume G is semisimple with an irreducible
root system and simply connected.
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Classic Examples

Classic Matrix Examples:
@ Type Ap: SLpta
e Type B,: SO2p41
e Type Cy: Spa2n
e Type D,: SOz,

and the exceptional groups in types Eg, E7, Eg, Fs, and G,.
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@ T: maximal torus (diagonalizable subgroup isomorphic to
Gl)of rank nin G

e e.g., the diagonal matrices in SL, 1

®: irreducible root system associated to (G, T)

e weights for the adjoint action of T on g

o ®T ®~: positive and negative roots, respectively

o S={ay,...,a,} - simple roots
@ B= T x U: a Borel subgroup associated to the negative
roots

e U: product of negative root subgroups

e e.g., the lower triangular matrices in SL,;1

W - the Weyl group generated by simple reflections
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Root System Geometry

e [E: the Euclidean space spanned by ¢ with inner product (, )

@ The weight lattice: X(T) = Zw1 @ - - - ® Zwp, where the
fundamental dominant weights w; € E are defined by
(w,',ozj\-/) =0, 1<i,j<n.

e coroots: a¥ = 2a/{a,a)

@ The dominant weights: X(T)y :={Ae X(T): (\,a") >
OVaeS=Nw @ & Nw,

@ The p"-restricted weights:
XA(T)={ e X(T):0<(\,a")<p' VaeS}

) 1
@ The Weyl weight: p = > Z o
acdt
@ The maximal short root: «g
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The Coxeter Number

h:=(p,ay)+1
) h
A, | n+1
B, 2n
C, 2n
D, |2n—-2
Es 12
E; 18
Es 30
Fy4 12
Gy 6

h tends to separate “small” primes from “large” primes

Christopher P. Bendel Cohomology - Part 1



Key G-Modules

For A € X(T)4:
o Induced modules: HO(\) := ind§()\)
e On the right, A denotes the 1-dim module ky with U acting
trivially and T by A

o Weyl modules: V/(\) := HO(—wp(\))*
e wy denotes the longest word in W
e Simple modules: L(\) - arise as

o the socle of HO()\)
o the head of V(}\)

o In characteristic zero, H%(\) and V/()) are simple.
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Steinberg's Tensor Product Theorem

Given A € X(T)4, we may write it as
A=Xo+pAr+pPhat o+ P A

where Aj € Xi(T). Then

LN = L) ® LAY @ L(A)P @ -+ @ L(Am)™
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Restricting to G, or G(F,)

Question: What happens to a simple G-module L(\) upon
restriction to G, or G(IFq)?

A first connection between G, and G(Fy):

In either case, the set of irreducible modules is precisely
{L(A) : A e X, (T)}.

That is, the simples corresponding to the p’-restricted weights.
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Goal Revisited

Study cohomology and extensions over

o G, g, G G(F,)
o B, b, B, B(F,)
o U u, U, UF,)

Main modules of interest:

o k, L(N\), H°()\), V() for A € X(T)+
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Underlying Theme

Identify relationships between cohomology groups for these various
structures.

Apply computations from one realm to make computations in
another.

A fundamental question: determine whether a cohomology group
is non-zero.
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Connections: Rational Stability for Twists

M - a G-module

Recall the twisted module M(")

As r increases, the cohomology stabilizes. i.e., 3 R, depending on i
such that, for r > R,

H(G, M) = H(G, MU+D)y

@ Cline-Parshall-Scott-van der Kallen '77
o B-Nakano-Pillen '14
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Connections: G and B

M, N - G-modules, i >0

o Extiz(M, N) = Extiz (M, N)
o H(G, M) = H(B, M)
@ Also holds for a standard parabolic between B and G

@ Uses Kempf's vanishing theorem:
Riind§(A\) =0fori>0,Ae X(T);

@ Cline-Parshall-Scott-van der Kallen '77
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Connections: B and U

M - B-module, i >0

o H(B,M) = (H(U,M))T

Recall: B=T x U

The power of spectral sequences . ..
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The Lyndon-Hochschild-Serre Spectral Sequence

Applied to U < B:
ES"" = H™(B/U,H"(U,M)) = H™"(B, M)

The abutment (right-hand side) is a "limit” of the left-hand side
after a sequence of maps:

d2 < Emin Em+2,n—1
d3: MM EMEIn-2
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The Ej-page

This is a first quadrant spectral sequence

HO(B/U, H?(U,M)) HY(B/U,H?*(U, M)) H*(B/U, H?>(U, M)) ...
HO(B/U, HY(U, M)) HY(B/U, H*(U, M)) H*(B/U, H*(U, M)) ...
HO(B/U, HO(U, M)) HY(B/U,H°(U, M)) H*(B/U, H°(U, M)) ...
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The Ej-page

This is a first quadrant spectral sequence

HO(B/U, H?(U,M)) HY(B/U,H?*(U, M)) H*(B/U, H?>(U, M)) ...
HO(B/U, HY(U, M)) HY(B/U, H*(U, M)) H*(B/U, H*(U, M)) ...
HO(B/U, HO(U, M)) HY(B/U,H°(U, M)) H*(B/U, H°(U, M)) ...
Since B/U = T (a torus), H'(B/U, H/(U,M)) =0 for all i >0
and j >0

So the sequence really looks like ...
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The real Ey-page

H°(B/U,H*(U,M)) 0000 ...
HO(B/U,HY(U,M)) 0000 ...
HY(B/U,H°(U,M)) 0000 ...
And so all the differentials vanish giving
H"(B, M) = H*™"(B, M) = H°(B/U, H"(U, M))
= H(T,H"(U,M)) = H"(U,M)"
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Connections: Algebraic Groups and Frobenius Kernels

Recall: there is a chain of subgroups
GGCGC---CG

For any G-module M, the inclusion G, < G induces a map in
cohomology: H'(G, M) — H'(G,, M)
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Connections: Algebraic Groups and Frobenius Kernels

Recall: there is a chain of subgroups
GGCGC---CG

For any G-module M, the inclusion G, < G induces a map in
cohomology: H'(G, M) — H'(G,, M)

For all i > 0,
o H(G,M) = lim H(G,, M), any G-module M
o H(B,M) = lim H(B,, M), any B-module M

@ Again, holds for parabolics more generally.

@ Cline-Parshall-Scott '80, Friedlander-Parshall '87, van der
Kallen (per Jantzen '03)
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Connections: Algebraic Groups and Frobenius

Kernels/Finite Groups

By Generalized Frobenius Reciprocity,
o H(G,, M) =2 H/(G,indE (M)), for a G,-module M
o H(G(Fg), M) = H(G,ind¢  (M)), for a G(Fg)-module M

But these G-modules are infinite-dimensional.

Yet still useful. More on that coming ...
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Connections: Generic Cohomology

For a G-module M, the embedding G(F4) < G induces a
restriction map in cohomology:

H(G, M) — H(G(F,), M)

If we twist the module M and allow r in g = p" to grow, the map
is an isomorphism.
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Connections: Generic Cohomology

For a G-module M, the embedding G(F4) < G induces a
restriction map in cohomology:

H'(G, M) — H'(G(Fq), M)
If we twist the module M and allow r in g = p" to grow, the map
is an isomorphism.

For sufficiently large r and s (depending on i and ...),

H'(G, M) = H(G(Fq), M) = H'(G(Fq), M).
i.e., As r increases, H'(G(F4), M) stabilizes to a “generic” value

@ Cline-Parshall-Scott-van der Kallen '77
@ B-Nakano-Pillen '14
@ Questions/Problems:

e lIdentifying sharp bounds for stabilization
e Computing generic cohomology
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Direct G to G(F,) Connections

Andersen '84: X\, € X,(T) with (A + p, o) < p" —p~1 -1,

Exth (L(N), L(1) = Extlgsy (LY, L(1)

l.e., A+ p is not too large relative to p

Taking A = 0, gives a condition for

HY(G, L(n)) = HY(G(Fq), L(n))
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Induction and Truncation

Recall: Extlyg y(L(A), L(1)) = Extg(L(A), L(1) @ ind &, y(K))

B-Nakano-Pillen '01, '02, '04: Truncate indg(Fq)(k) by taking the
largest submodule whose composition factors have highest weights
that are “small” ...

For p > 3(h—1),

Extle, (L = @Bk (L) © L), L) @ L))

vel

M={rveX(T)y: (r,ay) < h}
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More G to G(IF,)-connections

If the right-hand Ext-groups vanish for v # 0, then

Exth ) (LOV), (1)) 2 Bxts(LY), L(1)

For example: A = X\g+ pA1+---p 1A\ _1,
1= po+ppur+ -+ p e

@ Holds if A\,—1 = pr—1

o Eg ifA=pu

@ Fix A and p, can let r increase until true

Question: What about small primes?

Can get some of this assuming p” is sufficiently large, with p
“small” (e.g., B-Nakano-Pillen '06).
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Shifting Weights

Even if Extlc(Fq)(L()\), L(p)) 2 ExtE(L(N), L(1)), we can “shift”
weights . ..

B-Nakano-Pillen '02, '06: Still p > 3(h — 1) (or p" large) .
For r >3, given A, 1 € X,(T), there exist \, fi € X,(T) such that

Exttr, ) (L), L(1) = Extb(L(Y), (7))

Corollary:

max{dim Extg gy (L(A), L() | A, € X(T)}
= max{dimy Extt(L(\), L(p)) | A\, v € X(T)}.
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Generic Cohomology Returns

Parshall-Scott-Stewart '13: For sufficiently large r (depeNnding on
m and the root system), given A\ € X,(T), there exists A € X,(T)
such that

H™(G(Fq), L(A)) = H™(G, L(A))
i.e., can get generic cohomology without the twisting on the right.

Note: there is no condition on the prime here.
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Connecting G and G,

Can use LHS for G, < G ...
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Connecting G and G,

Can use LHS for G, < G ...
Using indgr (and Andersen '84), one can get (B-Nakano-Pillen '02)

a similar sort of result for p > 3(h — 1):

Extg, (L(N), L(p)) = Extg(L(N), L(p)) @© (Remainder Term)

Example: for r > 2 _
A=Xo+phi+-p A=A+ p N,
p=pio+pur+---p = p+p

If A # f1, then

Extg, (L(A), L(1)) = Extg (L), L(k))
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Connections: Frobenius Kernels and Lie Algebras

Let G be arbitrary for this slide and M - G,-module.
The May spectral sequence leads to spectral sequences:

o E/* =S(g")@S(g") V@ ®S(g") " ®M = H (G, M),
p=2

° El'ﬂ = Ng") ® /\(g*)(l) R ® /\(g*)(r—l) ® 5(9*)(1) ®
S(g")@ @@ 5(g*)") @ M= H(G,, M), p> 2.

@ 3 G-versions also
The p > 2 case may be refined to (Friedlander-Parshall '86):

E5Y = S'(g")M @ H(g, M) = H*(Gy, M)
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Until Tomorrow

To be continued . ..
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