Cohomology of algebraic groups, Lie algebras, and related finite groups of Lie type Part 1

Christopher P. Bendel

SE Lie Theory Workshop X University of Georgia June 10, 2018 Considering modular representation theory:

Fix an algebraically closed field k of characteristic p > 0

Goals:

- Talk about a variety of connections/relationships between cohomology/extensions for these various algebraic structures.
- Talk about a number of computational problems, particular ones where the answers remain incomplete.
- Demonstrate how those connections can be used toward making computations.

Outline

Part 1:

- Start at the beginning ...
- Structures of interest: algebraic groups, Lie algebras, and finite groups of Lie type
- Modules
- Cohomology and Extensions
- Some basic tools
- Connections, connections, and more connections
- A few computations

Part 2:

• Computations and more computations

A few general caveats:

- Certainly not exhaustive!
- Apologies for missed results.
- A "coincidence": the problems I am most familiar with and find interesting, ... often happen to be the ones I have worked on
- A couple technical caveats:
 - There will be few comments on characteristic zero fields.
 - Not always precise with statements of results.
 - Terminology with multiple meanings (e.g., restricted and induction)

- Representations of Algebraic Groups, J. C. Jantzen, Mathematical Surveys and Monographs 107, AMS, 2003.
- Modular Representations of Finite Groups of Lie Type, J. E. Humphreys, LMS Lecture Note Series 326, Cambridge University Press, 2005.

Algebraic Groups

- ${\cal G}$ an algebraic group scheme over k
 - Functor from (commutative) k-algebras to groups
 - Coordinate algebra: k[G]; commutative Hopf algebra
 - $G(A) = \operatorname{Hom}_{k-\operatorname{alg}}(k[G], A)$, for a k-algebra A
 - Distribution algebra (or hyperalgebra): Dist(G) ⊂ k[G]*

Examples: Here A is a k-algebra

 $\mathfrak{g} = \operatorname{Lie}(G)$ - The Lie algebra of G over k

• A *p*-restricted Lie algebra: $(-)^{[p]} : \mathfrak{g} \to \mathfrak{g}$

Examples:

- Lie(GL_n) = gl_n = {n × n matrices over k}
 [B, C] = BC CB
 - $B^{[p]} = B^p$ (matrix power)
- Lie(\mathbb{G}_a) = k with trivial bracket and [p]-map

$U(\mathfrak{g})$ - the universal enveloping algebra of \mathfrak{g}

• In characteristic zero, $U(\mathfrak{g}) \cong \text{Dist}(G)$

The *p*-restricted case:

 $u(\mathfrak{g}):=U(\mathfrak{g})/(x^p-x^{[p]})$ - the restricted enveloping algebra

- Finite-dimensional, with dimension $p^{\dim(\mathfrak{g})}$
- There is an injection $u(\mathfrak{g}) \hookrightarrow \text{Dist}(G)$

The Frobenius morphism of schemes: $F: G \rightarrow G$

 $G_r := \ker F^r$ - scheme theoretic kernel

• G_r is a normal subgroup scheme of G

•
$$G_1 \subset G_2 \subset G_r \subset \cdots \subset G$$

• $k[G_r]$ is finite-dimensional and local

Examples:

Elementary Example:

General Fact:

 $k[G_1]^* \cong u(\mathfrak{g})$ as Hopf algebras

Recall Frobenius: $F: G \rightarrow G$

• $G(\mathbb{F}_p) := G^F$ or more generally

- There exist "twisted" versions as well.
- $GL_n(\mathbb{F}_p)$ $n \times n$ invertible matrices with entries in \mathbb{F}_p

•
$$\mathbb{G}_a(\mathbb{F}_p) = (\mathbb{F}_p, +)$$

•
$$G_r(\mathbb{F}_p) = 1$$

伺 ト イヨト イヨト

General Assumption (any context): A module M will be a finite-dimensional vector space over k

Algebraic group G: a rational G-module M

- via an action of G on M
- via a group scheme homomorphism $G \rightarrow GL(M)$
- as a co-module for k[G]
- Gives rise to a Dist(G)-module

Lie algebra \mathfrak{g} :

- Ordinary module: a $U(\mathfrak{g})$ -module
 - $\bullet\,$ or via an appropriate $\mathfrak{g}\text{-action}\,$
- Restricted module: a $u(\mathfrak{g})$ -module
 - \mathfrak{g} -action that respects the [p]-mapping

Any G-module can be considered as a restricted \mathfrak{g} -module.

Note: Study of non-restricted representations for a *p*-restricted Lie algebra . . .

Frobenius kernel G_r:

- As an algebraic group
- As a $k[G_r]^*$ -module
- Any *G*-module is a *G_r*-module via restriction

 G_1 -modules are equivalent to restricted g-modules

Finite groups: $G(\mathbb{F}_q)$

- via an ordinary group homomorphism $G(\mathbb{F}_q) \to GL(M)$
- as a $kG(\mathbb{F}_q)$ -module
 - the "defining characteristic" case
- Again, any G-module is a $G(\mathbb{F}_q)$ -module via restriction

Note: Over characteristic zero, $kG(\mathbb{F}_q)$ -modules are semisimple.

Can also consider the "non-defining characteristic" case: $kG(\mathbb{F}_q)$ -modules where $q = p^r$ and the characteristic of k is prime but *not* p. Might or might not be semisimple ...

New Modules from Old

- M, N (finite-dimensional) G-modules
 - Direct Sums: $M \oplus N$
 - Tensor Products: $M \otimes N$
 - Dual Modules: $M^* := \operatorname{Hom}_k(M, k)$
 - Frobenius Twists: $r \ge 1$, $F^r : G \to G$
 - $M^{(r)} := M$ with $g \in G$ acting via $F^r(g)$
 - If $N \cong M^{(r)}$, we may write $N^{(-r)}$ for M
 - Induced Modules: $\operatorname{ind}_{G}^{G'}(M)$ for $G \subset G'$

Restrictions of twisted G-modules:

- Over G_r , $M^{(r)}$ is trivial i.e., $k^{\oplus \dim M}$
- Over $G(\mathbb{F}_q)$, $M^{(r)} \cong M$

M - (finite-dimensional) G-module

 $H^{i}(G, M)$:

- *i*th right derived functor of the fixed point functor $(-)^{G}$ on M
- *i*th right derived functor of $\text{Hom}_G(k, -)$ on M

•
$$\operatorname{H}^{i}(G, M) \cong \operatorname{Ext}^{i}_{G}(k, M)$$

• via the Hochschild complex $C^{\bullet}(G, M)$: $C^{n}(G, M) = M \otimes \bigotimes^{n} k[G]$

- $\mathsf{H}^{ullet}(G,k) := \bigoplus_{i \geq 0} \mathsf{H}^i(G,k)$ has a ring structure via the cup product
 - via the Hochschild complex or Yoneda splice (using extensions)
 - graded commutative: for $a \in \mathsf{H}^i$ and $b \in \mathsf{H}^j$, $ab = (-1)^{ij}ba$
 - commutative for p = 2
 - H^{2•}(G, k) is commutative

M, N - finite-dimensional G-modules

 $\operatorname{Ext}_{G}^{i}(N,M)$:

- *i*th right derived functor of $\operatorname{Hom}_{G}(N, -)$ on M
- *i*th right derived functor of Hom_G(-, M) on N; if enough projectives exist
- Equivalence classes of extensions:

$$0 \rightarrow M \rightarrow C_1 \rightarrow \cdots \rightarrow C_i \rightarrow N \rightarrow 0$$

• $\operatorname{Ext}^{i}_{G}(N,M) \cong \operatorname{Ext}^{i}_{G}(k,N^{*}\otimes M) \cong \operatorname{H}^{i}(G,N^{*}\otimes M)$

Defined similarly

For G_r : can define via $k[G_r]^*$

For $G(\mathbb{F}_q)$:

- ordinary group cohomology
- can define via $kG(\mathbb{F}_q)$
- can use the bar resolution

Warning: Need to be careful about context here.

Restricted cohomology: $H^{i}(u(\mathfrak{g}), M) \cong H^{i}(G_{1}, k)$

• Cohomology of the restricted enveloping algebra or, equivalently, the first Frobenius kernel

Ordinary cohomology: $H^{i}(\mathfrak{g}, M) = H^{i}(U(\mathfrak{g}), M)$

- Cohomology of the (full) enveloping algebra
- Can be computed using the cohomology of a complex M ⊗ Λ[●](g^{*})

•
$$H^i(\mathfrak{g}, M) = 0$$
 for $i > \dim \mathfrak{g}$

Cohomology Examples

For \mathbb{G}_m : (semi-simplicity)

• $H^{i}(\mathbb{G}_{m}, M) = 0$ for i > 0 for any \mathbb{G}_{m} -module M

・ 一 マ ト ・ 日 ト ・

Cohomology Examples

For \mathbb{G}_m : (semi-simplicity)

• $H^{i}(\mathbb{G}_{m}, M) = 0$ for i > 0 for any \mathbb{G}_{m} -module M

For \mathbb{G}_a :

•
$$p = 2$$
, $H^{\bullet}(\mathbb{G}_a, k) = k[\lambda_1, \lambda_2, \dots]$, with $\lambda_i \in H^1$

• p > 2, $H^{\bullet}(\mathbb{G}_a, k) = \Lambda^{\bullet}(\lambda_1, \lambda_2, \dots) \otimes k[x_1, x_2, \dots]$, with $\lambda_i \in H^1$, $x_i \in H^2$

• characteristic zero, $H^{\bullet}(\mathbb{G}_a, k) = \Lambda^{\bullet}(k)$

•
$$p = 2$$
, $H^{\bullet}(\mathbb{G}_{a,r}, k) = k[\lambda_1, \lambda_2, \dots, \lambda_r]$, with $\lambda_i \in H^1$

• p > 2, $H^{\bullet}(\mathbb{G}_{a,r}, k) = \Lambda^{\bullet}(\lambda_1, \lambda_2, \dots, \lambda_r) \otimes k[x_1, x_2, \dots, x_r]$, with $\lambda_i \in H^1$, $x_i \in H^2$

Note: The cohomology of $\mathbb{G}_{a,r}$ is the same as that of the elementary abelian group $(\mathbb{Z}/p)^r$.

The radical of G: R(G) - largest connected normal solvable subgroup of G

If the unipotent radical of R(G) is trivial, we say G is reductive.

• e.g., *GL*_n

If R(G) is trivial, we say G is semisimple.

• e.g., SL_n

For simplicity, generally assume G is semisimple with an irreducible root system and simply connected.

Classic Matrix Examples:

- Type A_n : SL_{n+1}
- Type *B_n*: *SO*_{2*n*+1}
- Type C_n : Sp_{2n}
- Type D_n : SO_{2n}

and the exceptional groups in types E_6 , E_7 , E_8 , F_4 , and G_2 .

- T: maximal torus (diagonalizable subgroup isomorphic to \mathbb{G}_m^n) of rank n in G
 - e.g., the diagonal matrices in SL_{n+1}
- Φ : irreducible root system associated to (G, T)
 - \bullet weights for the adjoint action of ${\mathcal T}$ on ${\mathfrak g}$
 - $\Phi^+,\,\Phi^-\colon$ positive and negative roots, respectively
 - $S = \{\alpha_1, \dots, \alpha_n\}$ simple roots
- $B = T \ltimes U$: a Borel subgroup associated to the negative roots
 - U: product of negative root subgroups
 - e.g., the lower triangular matrices in SL_{n+1}
- W the Weyl group generated by simple reflections

・ 戸 ト ・ 三 ト ・

Root System Geometry

- \mathbb{E} : the Euclidean space spanned by Φ with inner product $\langle \, , \, \rangle$
- The weight lattice: X(T) = Zω₁ ⊕ · · · ⊕ Zω_n, where the fundamental dominant weights ω_i ∈ E are defined by ⟨ω_i, α[∨]_j⟩ = δ_{ij}, 1 ≤ i, j ≤ n.
- coroots: $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$
- The dominant weights: $X(T)_+ := \{\lambda \in X(T) : \langle \lambda, \alpha^{\vee} \rangle \ge 0 \ \forall \ \alpha \in S\} = \mathbb{N}\omega_1 \oplus \cdots \oplus \mathbb{N}\omega_n$
- The *p*^r-restricted weights: $X_r(T) := \{\lambda \in X(T) : 0 \le \langle \lambda, \alpha^{\vee} \rangle < p^r \ \forall \ \alpha \in S\}$
- The Weyl weight: $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$
- The maximal short root: $lpha_{0}$

The Coxeter Number

$$\begin{array}{c|c|c} h := \langle \rho, \alpha_0^{\vee} \rangle + 1 \\ \hline \Phi & h \\ \hline A_n & n+1 \\ B_n & 2n \\ C_n & 2n \\ D_n & 2n-2 \\ E_6 & 12 \\ E_7 & 18 \\ E_8 & 30 \\ F_4 & 12 \\ G_2 & 6 \end{array}$$

h tends to separate "small" primes from "large" primes

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

æ

For $\lambda \in X(T)_+$:

- Induced modules: $H^0(\lambda) := \operatorname{ind}_B^G(\lambda)$
 - On the right, λ denotes the 1-dim module k_λ with U acting trivially and T by λ
- Weyl modules: $V(\lambda) := H^0(-w_0(\lambda))^*$
 - w_0 denotes the longest word in W
- Simple modules: $L(\lambda)$ arise as
 - the socle of $H^0(\lambda)$
 - the head of $V(\lambda)$
- In characteristic zero, $H^0(\lambda)$ and $V(\lambda)$ are simple.

Given $\lambda \in X(T)_+$, we may write it as

$$\lambda = \lambda_0 + p\lambda_1 + p^2\lambda_2 + \dots + p^m\lambda_m$$

where $\lambda_i \in X_1(T)$. Then

 $L(\lambda) \cong L(\lambda_0) \otimes L(\lambda_1)^{(1)} \otimes L(\lambda_2)^{(2)} \otimes \cdots \otimes L(\lambda_m)^{(m)}$

伺 ト イヨト イヨト

Question: What happens to a simple *G*-module $L(\lambda)$ upon restriction to G_r or $G(\mathbb{F}_q)$?

A first connection between G_r and $G(\mathbb{F}_q)$:

In either case, the set of irreducible modules is precisely

 $\{L(\lambda):\lambda\in X_r(T)\}.$

That is, the simples corresponding to the p^r -restricted weights.

Study cohomology and extensions over

- $G, \mathfrak{g}, G_r, G(\mathbb{F}_q)$
- B, \mathfrak{b} , B_r , $B(\mathbb{F}_q)$
- U, \mathfrak{u} , U_r , $U(\mathbb{F}_q)$

Main modules of interest:

• k, $L(\lambda)$, $H^0(\lambda)$, $V(\lambda)$ for $\lambda \in X(T)_+$

Identify relationships between cohomology groups for these various structures.

Apply computations from one realm to make computations in another.

A fundamental question: determine whether a cohomology group is non-zero.

M - a G-module

Recall the twisted module $M^{(r)}$

As r increases, the cohomology stabilizes. i.e., $\exists R$, depending on i such that, for $r \ge R$,

$$\mathsf{H}^{i}(G, M^{(r)}) \cong \mathsf{H}^{i}(G, M^{(r+1)})$$

- Cline-Parshall-Scott-van der Kallen '77
- B-Nakano-Pillen '14

M, *N* - *G*-modules, $i \ge 0$

- $\operatorname{Ext}^{i}_{G}(M, N) \cong \operatorname{Ext}^{i}_{B}(M, N)$
- $\operatorname{H}^{i}(G, M) \cong \operatorname{H}^{i}(B, M)$
- Also holds for a standard parabolic between B and G
- Uses Kempf's vanishing theorem:

$${\it R}^i$$
 ind $^{\sf G}_{{\it B}}(\lambda)=$ 0 for $i>$ 0, $\lambda\in X({\it T})_+$

• Cline-Parshall-Scott-van der Kallen '77

- M B-module, $i \ge 0$
 - $H^i(B, M) \cong (H^i(U, M))^T$

Recall: $B = T \ltimes U$

The power of spectral sequences ...

- ₹ € ►

Applied to $U \trianglelefteq B$:

$$E_2^{m,n} = H^m(B/U, H^n(U, M)) \Rightarrow H^{m+n}(B, M)$$

The abutment (right-hand side) is a "limit" of the left-hand side after a sequence of maps:

$$d_2: E^{m,n} \to E^{m+2,n-1}$$

 $d_3: E^{m,n} \to E^{m+3,n-2}$...

• • = • • = •

. . .

This is a first quadrant spectral sequence

 $\begin{aligned} &H^{0}(B/U, H^{2}(U, M)) \ H^{1}(B/U, H^{2}(U, M)) \ H^{2}(B/U, H^{2}(U, M)) \ \dots \\ &H^{0}(B/U, H^{1}(U, M)) \ H^{1}(B/U, H^{1}(U, M)) \ H^{2}(B/U, H^{1}(U, M)) \ \dots \\ &H^{0}(B/U, H^{0}(U, M)) \ H^{1}(B/U, H^{0}(U, M)) \ H^{2}(B/U, H^{0}(U, M)) \ \dots \end{aligned}$

. . .

This is a first quadrant spectral sequence

$$\begin{split} &H^0(B/U, H^2(U, M)) \ H^1(B/U, H^2(U, M)) \ H^2(B/U, H^2(U, M)) \ \dots \\ &H^0(B/U, H^1(U, M)) \ H^1(B/U, H^1(U, M)) \ H^2(B/U, H^1(U, M)) \ \dots \\ &H^0(B/U, H^0(U, M)) \ H^1(B/U, H^0(U, M)) \ H^2(B/U, H^0(U, M)) \ \dots \\ &\text{Since } B/U \cong T \ (\text{a torus}), \ H^i(B/U, H^j(U, M)) = 0 \ \text{for all } i > 0 \\ &\text{and } j \ge 0 \end{split}$$

So the sequence really looks like ...

. . .

 $H^{0}(B/U, H^{2}(U, M)) \ 0 \ 0 \ 0 \ 0 \ \dots$ $H^{0}(B/U, H^{1}(U, M)) \ 0 \ 0 \ 0 \ 0 \ \dots$ $H^{0}(B/U, H^{0}(U, M)) \ 0 \ 0 \ 0 \ 0 \ \dots$

And so all the differentials vanish giving

$$H^{n}(B, M) = H^{0+n}(B, M) = H^{0}(B/U, H^{n}(U, M))$$

= $H^{0}(T, H^{n}(U, M)) = H^{n}(U, M)^{T}$

Connections: Algebraic Groups and Frobenius Kernels

Recall: there is a chain of subgroups

(

$$G_1 \subset G_2 \subset \cdots \subset G$$

For any *G*-module *M*, the inclusion $G_r \hookrightarrow G$ induces a map in cohomology: $H^i(G, M) \to H^i(G_r, M)$

Connections: Algebraic Groups and Frobenius Kernels

Recall: there is a chain of subgroups

$$G_1 \subset G_2 \subset \cdots \subset G$$

For any *G*-module *M*, the inclusion $G_r \hookrightarrow G$ induces a map in cohomology: $H^i(G, M) \to H^i(G_r, M)$

For all $i \geq 0$,

- $H^{i}(G, M) \cong \lim_{\leftarrow} H^{i}(G_{r}, M)$, any *G*-module *M*
- $H^{i}(B, M) \cong \lim_{i \to \infty} H^{i}(B_{r}, M)$, any *B*-module *M*
- Again, holds for parabolics more generally.
- Cline-Parshall-Scott '80, Friedlander-Parshall '87, van der Kallen (per Jantzen '03)

Connections: Algebraic Groups and Frobenius Kernels/Finite Groups

By Generalized Frobenius Reciprocity,

- $H^{i}(G_{r}, M) \cong H^{i}(G, \operatorname{ind}_{G_{r}}^{G}(M))$, for a G_{r} -module M
- $H^{i}(G(\mathbb{F}_{q}), M) \cong H^{i}(G, \operatorname{ind}_{G(\mathbb{F}_{q})}^{G}(M))$, for a $G(\mathbb{F}_{q})$ -module M

But these *G*-modules are infinite-dimensional.

Yet still useful. More on that coming ...

Connections: Generic Cohomology

For a *G*-module *M*, the embedding $G(\mathbb{F}_q) \hookrightarrow G$ induces a restriction map in cohomology:

$$\mathrm{H}^{i}(G,M) \to \mathrm{H}^{i}(G(\mathbb{F}_{q}),M)$$

If we twist the module M and allow r in $q = p^r$ to grow, the map is an isomorphism.

Connections: Generic Cohomology

For a *G*-module *M*, the embedding $G(\mathbb{F}_q) \hookrightarrow G$ induces a restriction map in cohomology:

 $\mathrm{H}^{i}(G,M) \to \mathrm{H}^{i}(G(\mathbb{F}_{q}),M)$

If we twist the module M and allow r in $q = p^r$ to grow, the map is an isomorphism.

For sufficiently large r and s (depending on i and ...),

$$\mathrm{H}^{i}(G, M^{(s)}) \cong \mathrm{H}^{i}(G(\mathbb{F}_{q}), M^{(s)}) \cong \mathrm{H}^{i}(G(\mathbb{F}_{q}), M).$$

i.e., As r increases, $H^{i}(G(\mathbb{F}_{q}), M)$ stabilizes to a "generic" value

- Cline-Parshall-Scott-van der Kallen '77
- B-Nakano-Pillen '14
- Questions/Problems:
 - Identifying sharp bounds for stabilization
 - Computing generic cohomology

Andersen '84: $\lambda, \mu \in X_r(T)$ with $\langle \lambda + \mu, \alpha_0^{\vee} \rangle < p^r - p^{r-1} - 1$,

$$\operatorname{Ext}^{1}_{G}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^{1}_{G(\mathbb{F}_{q})}(L(\lambda), L(\mu))$$

I.e., $\lambda+\mu$ is not too large relative to p

Taking $\lambda = 0$, gives a condition for

$$\mathrm{H}^{1}(G, L(\mu)) \cong \mathrm{H}^{1}(G(\mathbb{F}_{q}), L(\mu))$$

伺 ト イヨ ト イヨト

$$\mathsf{Recall:} \; \mathsf{Ext}^{i}_{\mathcal{G}(\mathbb{F}_q)}(L(\lambda), L(\mu)) \cong \mathsf{Ext}^{i}_{\mathcal{G}}(L(\lambda), L(\mu) \otimes \mathsf{ind}_{\mathcal{G}(\mathbb{F}_q)}^{\mathcal{G}}(k))$$

B-Nakano-Pillen '01, '02, '04: Truncate $\operatorname{ind}_{G(\mathbb{F}_q)}^G(k)$ by taking the largest submodule whose composition factors have highest weights that are "small" ...

For $p \ge 3(h-1)$, $\operatorname{Ext}^{1}_{G(\mathbb{F}_{q})}(L(\lambda), L(\mu)) \cong \bigoplus_{\nu \in \Gamma} \operatorname{Ext}^{1}_{G}(L(\lambda) \otimes L(\nu)^{(r)}, L(\mu) \otimes L(\nu)).$ $\Gamma := \{\nu \in X(T)_{+} : \langle \nu, \alpha_{0}^{\vee} \rangle < h\}$ If the right-hand Ext-groups vanish for $\nu \neq 0$, then

$$\operatorname{Ext}^1_{G(\mathbb{F}_q)}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^1_G(L(\lambda), L(\mu))$$

For example:
$$\lambda = \lambda_0 + p\lambda_1 + \cdots p^{r-1}\lambda_{r-1}$$
,
 $\mu = \mu_0 + p\mu_1 + \cdots + p^{r-1}\mu_{r-1}$

- Holds if $\lambda_{r-1} = \mu_{r-1}$
- E.g, if $\lambda = \mu$
- Fix λ and μ , can let r increase until true

Question: What about small primes?

Can get some of this assuming p^r is sufficiently large, with p "small" (e.g., B-Nakano-Pillen '06).

Even if $\operatorname{Ext}^{1}_{G(\mathbb{F}_{q})}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^{1}_{G}(L(\lambda), L(\mu))$, we can "shift" weights ...

B-Nakano-Pillen '02, '06: Still $p \ge 3(h-1)$ (or p^r large).

For $r \geq 3$, given $\lambda, \mu \in X_r(T)$, there exist $\tilde{\lambda}, \tilde{\mu} \in X_r(T)$ such that

$$\operatorname{Ext}^{1}_{G(\mathbb{F}_{q})}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^{1}_{G}(L(\tilde{\lambda}), L(\tilde{\mu}))$$

Corollary:

$$egin{aligned} & \max\{\dim_k \operatorname{Ext}^1_{G(\mathbb{F}_q)}(L(\lambda),L(\mu)) \mid \lambda,\mu\in X_r(\mathcal{T})\}\ &=\max\{\dim_k \operatorname{Ext}^1_G(L(\lambda),L(\mu)) \mid \lambda,\mu\in X_r(\mathcal{T})\}. \end{aligned}$$

Parshall-Scott-Stewart '13: For sufficiently large r (depending on m and the root system), given $\lambda \in X_r(T)$, there exists $\tilde{\lambda} \in X_r(T)$ such that

$$\mathrm{H}^{m}(G(\mathbb{F}_{q}), L(\lambda)) \cong \mathrm{H}^{m}(G, L(\tilde{\lambda}))$$

i.e., can get generic cohomology *without* the twisting on the right. *Note:* there is no condition on the prime here.

Connecting G and G_r

Can use LHS for $G_r \trianglelefteq G \ldots$

・ロト ・四ト ・ヨト ・ヨト

æ

Connecting G and G_r

Can use LHS for $G_r \trianglelefteq G \ldots$

Using $\operatorname{ind}_{G_r}^G$ (and Andersen '84), one can get (B-Nakano-Pillen '02) a similar sort of result for $p \ge 3(h-1)$:

 $\operatorname{Ext}^{1}_{G_{r}}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^{1}_{G}(L(\lambda), L(\mu)) \oplus (\operatorname{Remainder Term})$

Example: for
$$r \geq 2$$

 $\lambda = \lambda_0 + p\lambda_1 + \cdots p^{r-1}\lambda_{r-1} = \dot{\lambda} + p^{r-1}\lambda_{r-1},$
 $\mu = \mu_0 + p\mu_1 + \cdots p^{r-1}\mu_{r-1} = \dot{\mu} + p^{r-1}\mu_{r-1}$
If $\dot{\lambda} \neq \dot{\mu}$, then

$$\operatorname{Ext}^{1}_{G_{r}}(L(\lambda), L(\mu)) \cong \operatorname{Ext}^{1}_{G}(L(\lambda), L(\mu))$$

Let G be arbitrary for this slide and M - G_r -module.

The May spectral sequence leads to spectral sequences:

•
$$E_1^{\bullet,\bullet} = S(\mathfrak{g}^*) \otimes S(\mathfrak{g}^*)^{(1)} \otimes \cdots \otimes S(\mathfrak{g}^*)^{(r-1)} \otimes M \Rightarrow \mathsf{H}^{\bullet}(G_r, M),$$

 $p = 2$

•
$$E_1^{\bullet,\bullet} = \Lambda(\mathfrak{g}^*) \otimes \Lambda(\mathfrak{g}^*)^{(1)} \otimes \cdots \otimes \Lambda(\mathfrak{g}^*)^{(r-1)} \otimes S(\mathfrak{g}^*)^{(1)} \otimes S(\mathfrak{g}^*)^{(2)} \otimes \cdots \otimes S(\mathfrak{g}^*)^{(r)} \otimes M \Rightarrow \mathsf{H}^{\bullet}(G_r, M), \ p > 2.$$

● ∃ G-versions also

The p > 2 case may be refined to (Friedlander-Parshall '86):

$$E_2^{2i,j} = S^i(\mathfrak{g}^*)^{(1)} \otimes \mathsf{H}^j(\mathfrak{g}, M) \Rightarrow \mathsf{H}^{2i+j}(G_1, M)$$

To be continued ...

æ

イロト イヨト イヨト イ