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On the affine VW supercategory

Preliminaries

Background: vector superspaces. Work over C.
A Z/2Z-graded vector space V = V0 ⊕ V1 is a vector superspace.

The superdimension of V is
dim(V ) := (dimV0|dimV1) = dimV0 − dimV1.

Given a homogeneous element v ∈ V , the parity (or the degree) of
v is v ∈ {0, 1}.
The parity switching functor π sends V0 7→ V1 and V1 7→ V0.

Let m = dimV0 and n = dimV1. The Lie superalgebra is
gl(m|n) := EndC(V ).

That is, given a homogeneous ordered basis for V:

V = C{v1, . . . , vm}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

,
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On the affine VW supercategory

Preliminaries

Matrix representation for gl(m|n).

the Lie superalgebra is the endomorphism algebra

gl(m|n) :=

{(
A B
C D

)
: A ∈ Mm,m,B,C

t ∈ Mm,n,D ∈ Mn,n

}
,

where Mi ,j := Mi ,j(C). Since gl(m|n) = gl(m|n)0 ⊕ gl(m|n)1,

gl(m|n)0 =

{(
A 0
0 D

)}
and gl(m|n)1 =

{(
0 B
C 0

)}
.

We say V is the natural representation of gl(m|n).

The grading on gl(m|n) is induced by V , with Lie superbracket
(supercommutator) [x , y ] = xy − (−1)xyyx for x , y homogeneous.
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Periplectic Lie superalgebras p(n)

Periplectic Lie superalgebras p(n).

Let m = n. Then

V = C2n = C{v1, . . . , vn}︸ ︷︷ ︸
V0

⊕C{v1′ , . . . , vn′}︸ ︷︷ ︸
V1

.

Define β : V ⊗ V → C as a symmetric, odd, nondegenerate
bilinear form satisfying:

β(v ,w) = β(w , v), β(v ,w) = 0 if v = w .

We define periplectic (strange) Lie superalgebras as:

p(n) := {x ∈ EndC(V ) : β(xv ,w) + (−1)xvβ(v , xw) = 0}.

In terms of above basis,

p(n) =

{(
A B
C −At

)
∈ gl(n|n) : B = Bt ,C = −C t

}
.
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.

Consider the category C of representations of p(n) with

Homp(n)(V ,V ′) := {f : V → V ′ : f homogeneous,C-linear,

f (x .v) = (−1)xf x .f (v), v ∈ V , x ∈ p(n)}.

Then U(p(n)) of p(n) is a Hopf superalgebra:

I (coproduct) ∆(x) = x ⊗ 1 + 1⊗ x ,

I (counit) ε(x) = 0,

I (antipode) S(x) = -x.

So the category of representations of p(n) is monoidal.
For x ⊗ y ∈ U(p(n))⊗ U(p(n)) on v ⊗ w ,

(x ⊗ y).(v ⊗ w) = (−1)yvxv ⊗ yw .
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Periplectic Lie superalgebras p(n)

Symmetric monoidal structure.
For x , y , a, b ∈ U(p(n)),

(x ⊗ y) ◦ (a⊗ b) := (−1)ya(x ◦ a)⊗ (y ◦ b),

and for two representations V and V ′, the super swap

σ : V ⊗ V ′ −→ V ′ ⊗ V , σ(v ⊗ w) = (−1)vww ⊗ v

is a map of p(n)-representations satisfying σ∗ = −σ.
Thus C is a symmetric monoidal category.
Furthermore, β induces a representation V and its dual V ∗ via

V → V ∗, v 7→ β(v ,−),

identifying V1 with V ∗
0

and V0 with V ∗
1

. This induces the dual map

β∗ : C ∼= C∗ −→ (V⊗V )∗ ∼= V⊗V , β∗(1) =
∑
i

−vi⊗vi ′+vi ′⊗vi ,

where β = β∗ = 1. Mee Seong Im West Point, NY 8



On the affine VW supercategory

Affine Brauer algebras

Affine Brauer algebras (generators and local moves).

sVVa has generators si , bi , b
∗
i , yj , where i = 1, . . . , a− 1,

j = 1, . . . , a and relations

= =

= =

=

Continued in the next slide.
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Affine Brauer algebras

Affine Brauer algebras (local moves; continued).

= − = −

= (braid reln) = (braid reln)

= (adjunctions) = − (adjunctions)

= (untwisting reln) =

= − (untwisting reln) =
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Affine Brauer algebras

Affine Brauer algebras (local moves; continued).

= =

= =

= =

= + − =

− = − − =
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Affine Brauer algebras

Connectors.

Each normal diagram d ∈ HomsBr (a, b), where a, b ∈ N0, gives
rise to a partition P(d) of the set of a + b points into 2-element
subsets given by the endpoints of the strings in the diagram d .

We call such a partition a connector, and write Conn(a, b) to
denote the set of all such connectors.

For each connector c ∈ Conn(a, b), we pick a normal diagram
dc ∈ P−1(c) ⊂ HomsBr (a, b).

Remark. Different normal diagrams in a single fibre P−1(c) differ
only by braid relations, and thus represent the same morphism.
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Affine Brauer algebras

(Regular) monomials and (normal) diagrams.

An example.

Algebraically, it is written as y2
1 y

4
6 y7s5b

∗
2b2b

∗
4b4s1s3s6y1y

2
3 .

Our affine VW superalgebra sVVa is:

I super (signed) version of the degenerate BMW algebra,

I the signed version of the affine VW algebra, and

I an affine version of the Brauer superalgebra.
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Theorem
The set Sa,b = {dc : c ∈ Conn(a, b)} is a basis of HomsBr (a, b).

Let S•a,b be the set of normal dotted diagrams obtained by taking
all diagrams in Sa,b and adding dots to them in all possible ways.

Let Sk
a,b ⊂ S•a,b and S≤ka,b =

⋃k
l=0 S

l
a,b be the sets of such diagrams

with exactly k dots and at most k dots, respectively.

When k = 0, S0
a,b = S≤0

a,b = Sa,b.

Theorem (Basis theorem)

The set S≤ka,b is a basis of HomsVV (a, b)≤k , and consequently the
set S•a,b is a basis of HomsVV (a, b).
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On the affine VW supercategory

The center of affine VW superalgebras

The center of sVVa = EndsVV (a), a ≥ 2 ∈ N.

Theorem
The center Z (sVVa) consists of all polynomials of the form∏

1≤i<j≤a
((yi − yj)

2 − 1)f̃ + c ,

where f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C.

The deformed squared Vandermonde determinant∏
1≤i<j≤a((yi − yj)

2 − 1) is symmetric, so∏
1≤i<j≤a

((yi − yj)
2 − 1) ∈ C[y1, . . . , ya]Sa .
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The center of affine VW superalgebras

The algebra Ah̄ and its specializations At , where t ∈ C.
Definition
Let Ah̄ be the superalgebra over C[h̄] with generators si , ei , yj for 1 ≤ i ≤ a − 1, 1 ≤ j ≤ a, where
si = ei = yj = 0, subject to the relations:

1. Involutions: s2
i = 1 for 1 ≤ i < a.

2. Commutation relations:

2.1 si ej = ej si if |i − j|> 1,
2.2 ei ej = ej ei if |i − j|> 1,
2.3 ei yj = yj ei if j 6= i, i + 1,
2.4 yi yj = yj yi for 1 ≤ i, j ≤ a.

3. Affine braid relations:

3.1 si sj = sj si if |i − j|> 1,
3.2 si si+1si = si+1si si+1 for

1 ≤ i ≤ a − 1,
3.3 si yj = yj si if j 6= i, i + 1.

4. Snake relations:

4.1 ei+1ei ei+1 = −ei+1,
4.2 ei ei+1ei = −ei for 1 ≤ i ≤ a − 2.

5. Tangle and untwisting relations:

5.1 ei si = ei and si ei = −ei for
1 ≤ i ≤ a − 1,

5.2 si ei+1ei = si+1ei ,

5.3 si+1ei ei+1 = −si ei+1,

5.4 ei+1ei si+1 = ei+1si ,

5.5 ei ei+1si = −ei si+1 for
1 ≤ i ≤ a − 2.

6. Idempotent relations: e2
i = 0 for

1 ≤ i ≤ a − 1.

7. Skein relations:

7.1 si yi − yi+1si = −h̄ei − h̄,

7.2 yi si − si yi+1 = h̄ei − h̄ for
1 ≤ i ≤ a − 1.

8. Unwrapping relations: e1y
k
1 e1 = 0 for k ∈ N.

9. (Anti)-symmetry relations:

9.1 ei (yi+1 − yi ) = h̄ei ,

9.2 (yi+1 − yi )ei = −h̄ei for
1 ≤ i ≤ a − 1.

For t ∈ C, let At be the quotient of Ah̄ by the ideal generated by h̄ − t. Mee Seong Im West Point, NY 16
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A sketch of proof of the Theorem on page 15

A sketch of proof of the Theorem on page 15.

1. The filtered algebra sVVa (via the filtration by the degree of
the polynomials in C[y1, . . . , ya]) is a Poincaré-Birkhoff-Witt
(PBW) deformation of the associated graded superalgebra
gsVVa = gr(sVVa),

2. For h̄ a parameter, the Rees construction gives the algebra Ah̄

over C[h̄] such that the specializations h̄ = 1 and h̄ = 0 are
precisely A1 = sVVa and A0 = gsVVa,

3. Describe the center of the C[h̄]-algebra Ah̄, and all its
specializations At for any t ∈ C using the Basis Theorem,

4. Determine the center of gsVVa using the isomorphism
Rees(Z (A1)) ∼= Z (Rees(A1)) ∼= Z (Ah̄), and

5. Find a lift of the appropriate basis elements to sVVa to obtain
the center of sVVa.
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On the affine VW supercategory

A sketch of proof of the Theorem on page 15

Expanding on 2.
Let B =

⋃
k≥0 B

≤k be a filtered C-algebra. The Rees algebra of B
is the C[h̄]-algebra Rees(B), given as a C-vector space by
Rees(B) =

⊕
k≥0 B

≤k h̄k , with multiplication and the h̄-action
given by

(ah̄i )(bh̄j) = (ab)h̄i+j for a ∈ B≤i , b ∈ B≤j , and ab ∈ B≤i+j ,

the product in B. It is graded as a C-algebra by the powers of h̄.

Lemma

1. Let
⋃

i≥0 Si be a basis of B compatible with the filtration,

where Si ’s are pairwise disjoint, and
⋃k

i=0 Si is a basis of B≤k .
Then

⋃
i≥0 Si h̄

i is a C[h̄]-basis of Rees(B).

2. Z (Rees(B)) = Rees(Z (B)).

3. Rees(A1) ∼= Ah̄, an isomorphism of C[h̄]-algebras.
Mee Seong Im West Point, NY 18



On the affine VW supercategory

A sketch of proof of the Theorem on page 15

Expanding on 3.
Show that Z (Ah̄) ⊆ C[h̄][y1, . . . , ya]Sa .

Lemma
For f ∈ Ah̄, the following are equivalent:

(a) fyi = yi f for all i ∈ [a] = {1, 2, . . . , a};
(b) f ∈ C[h̄][y1, . . . , ya].

So Z (Ah̄) ⊆ C[h̄][y1, . . . , ya].

Lemma
Let f ∈ C[h̄][y1, . . . , ya] ⊆ Ah̄ and 1 ≤ i ≤ a− 1.

(a) If fsi = si f , then
f (y1, . . . , yi , yi+1, . . . , ya) = f (y1, . . . , yi+1, yi , . . . , ya).

(b) For the special value h̄ = 0, the converse also holds: if
f (y1, . . . , yi , yi+1, . . . , ya) = f (y1, . . . , yi+1, yi , . . . , ya), then
fsi = si f in A0.

So Z (Ah̄) is a subalgebra of C[h̄][y1, . . . , ya]Sa .
Mee Seong Im West Point, NY 19
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A sketch of proof of the Theorem on page 15

Expanding on 3 (continued).
Consider the following elements in C[h̄][y1, . . . , ya]:

zij = (yi − yj)
2, for 1 ≤ i 6= j ≤ a and Dh̄ =

∏
1≤i<j≤a

(zij − h̄2),

where Dh̄ is symmetric. So Dh̄ ∈ C[h̄][y1, . . . , ya]Sa .
Use Dh̄ to produce central elements in Ah̄.

Lemma

1. For any 1 ≤ i ≤ a− 1, ei · (zi ,i+1 − h̄2) = (zi ,i+1 − h̄2) · ei = 0
in Ah̄, and consequently eiDh̄ = Dh̄ei = 0.

2. For any 1 ≤ k ≤ a− 1, we have Dh̄sk = skDh̄.

3. Let 1 ≤ i ≤ a− 1, and let f̃ ∈ C[h̄][y1, . . . , ya] be symmetric
in yi , yi+1. Then there exist polynomials
pj = pj(y1, . . . , ya) ∈ C[h̄][y1, . . . , ya] such that

f̃ si = si f̃ +
∑deg f̃−1

j=0 y ji · ei · pj . Mee Seong Im West Point, NY 20
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A sketch of proof of the Theorem on page 15

Expanding on 3 (continued).

Lemma
Let f̃ ∈ C[h̄][y1, . . . , ya]Sa be an arbitrary symmetric polynomial,
and c ∈ C. Then f = Dh̄ f̃ + c ∈ Z (Ah̄).

Expanding on 4.

Proposition. The center Z (A0) of the graded VW
superalgebra gsVVa consists of all f ∈ C[y1, . . . , ya]
of the form f = D0f̃ + c , for f̃ ∈ C[y1, . . . , ya]Sa and
c ∈ C.
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A sketch of proof of the Theorem on page 15

Expanding on 5.

Theorem
The center Z (sVVa) of the VW superalgebra sVVa = A1 consists of
all f ∈ C[y1, . . . , yn] of the form f = D1f̃ + c , for an arbitrary
symmetric polynomial f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C.

Proof.
For any filtered algebra B there exists a canonical injective algebra
homomorphism ϕ : grZ (B) ↪→ Z (gr(B)), given by
ϕ(f + Z (B)≤(k−1)) = f + B≤(k−1) for f ∈ Z (B)≤k . For B = sVVa

and gr(B) = gsVVa, Z (A0) consists of elements of the form
f = D0f̃ + c for f̃ a symmetric polynomial and c a constant. Since
D1f̃ + c ∈ Z (sVVa), we have ϕ(c) = c , and for f̃ symmetric and

homogeneous of degree k , ϕ(D1f̃ + sVV
≤a(a−1)+k−1
a ) = D0f̃ . Using

the above Proposition, we see that every f ∈ Z (gsVVa) is in the
image of ϕ, so ϕ is an isomorphism.
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A sketch of proof of the Theorem on page 15

Expanding on 5 (continued).

Theorem
The center Z (Ah̄) of the superalgebra Ah̄ consists of polynomials
f ∈ C[h̄][y1, . . . , yn] of the form f = Dh̄ f̃ + c, for an arbitrary
symmetric polynomial f̃ ∈ C[h̄][y1, . . . , ya]Sa and c ∈ C[h̄].

Proof.
The center Z (Ah̄) is isomorphic to Z (Rees(A1)), which is also
isomorphic to Rees(Z (A1)). The center Z (A1) consists of elements
of the form f = D1f̃ + c, with f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C.

Assume f̃ is homogeneous of degree k . Then D1f̃ ∈ A
≤k+a(a−1)
1 ,

which gives an element D1f̃ h̄
k+a(a−1) of

Rees(Z (A1)) ∼= Z (Rees(A1)). We see that Z (Ah̄) is spanned by
constants and the preimages under the isomorphism Ah̄

∼= Rees(A1)
of elements D1f̃ h̄

k+a(a−1), which are equal to Dh̄ f̃ .
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Thank you

Thank you.

Questions?
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