18.024–ESG Exam 2

Pramod N. Achar

Spring 2000

1. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ and $\mathbf{g} : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by the equations below. Compute the total derivatives $D\mathbf{f}$, $D\mathbf{g}$, and $D(\mathbf{f} \circ \mathbf{g})$.

 $\mathbf{f}(x,y) = (e^x, x+y)$ $\mathbf{g}(u,v,w) = (uv, uw)$

2. The following equation defines z implicitly as a function of x and y. Compute $\partial z/\partial x$ and $\partial z/\partial y$.

$$x^2z - xz^2 = 2y$$

Answer four of the five parts in questions 3–6.

- 3. Decide whether the following statements are true or false.
 - (a) Let $\mathbf{f} : \mathbb{R} \to \mathbb{R}^n$ be a function given by $\mathbf{f}(t) = (f_1(t), \dots, f_n(t)) = f_1(t)\mathbf{e}_1 + \cdots + f_n(t)\mathbf{e}_n$. If each of the scalar functions f_1, \dots, f_n is continuous at t = 0, then so is \mathbf{f} .
 - (b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a scalar field. We can define new functions of one variable by $g_1(t) = f(t, 0, \ldots, 0), g_2(t) = f(0, t, 0, \ldots, 0), \ldots, g_n(t) = f(0, \ldots, 0, t)$. If each of g_1, \ldots, g_n is continuous at t = 0, then f is continuous at $(0, \ldots, 0)$.
- 4. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0); furthermore, suppose that $D_1 f(0,0) = 5$ and $D_2 f(0,0) = -2$. Compute the directional derivative f'((0,0); (1,3)).
- 5. Let $f : \mathbb{R}^4 \to \mathbb{R}$ be the scalar field $f(x, y, z, w) = xy^2 z^2w$. The equation f(x, y, z, w) = 1 defines a 3-dimensional hypersurface in \mathbb{R}^4 . Find a normal vector to this surface at the point (1, 3, 2, 2).

6. Decide whether the limit $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ exists. If it exists, compute it; if not, explain why not.

7. (Optional) Many of you have given talks about poorly-behaved functions, such as one with all directional derivatives but no total derivative, or one whose second-order mixed partial derivatives do not agree. What technical term is used in mathematical writing to describe such functions? (*Hint*: The answer is not "functions from New Jersey.")