18.024–ESG Exam 3

Pramod N. Achar

Spring 2000

- 1. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be the vector field given by $\mathbf{f}(x, y) = (3x^2 4xy)\mathbf{i} + (3y^2 5xy)\mathbf{j}$. Let C be the curve from (-2, 4) to (1, 1) along the parabola $y = x^2$.
 - (a) Compute the length of this curve. (*Hint*: You may find the following formula useful: $\int \sqrt{1+u^2} = \frac{1}{2}(u\sqrt{1+u^2} + \operatorname{arcsinh} u)$.)

(b) Compute the line integral $\int_C \mathbf{f}$.

- (c) Show that **f** is not a gradient.
- 2. Let $S \subset \mathbb{R}^2$ be a region that is not a rectangle, and let $f : S \to \mathbb{R}$ be some scalar function defined on S. How is the integral $\iint_S f$ defined, in terms of integrals over rectangles?

3. Let S be the region in \mathbb{R}^2 bounded by the graphs of $y = x^2$ and $y = x^3$. (These curves intersect at two points—you may want to sketch them to see exactly what S looks like.) Compute $\iint_S (30x^2 - 210y^2)$.

4. Find a potential function for the vector field $\mathbf{f}(x, y) = 3x^2y\mathbf{i} + x^3\mathbf{j}$.

5. Let $\mathbf{f}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ be a vector field. Prove that if \mathbf{f} is the gradient of some scalar field ϕ , then $\partial P/\partial y = \partial Q/\partial x$.

- 6. (Optional) Which of the following is not a technical term in mathematics?
 - (a) excellent
 - (b) universally Japanese
 - (c) flabby
 - (d) rough