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The goal of this set of notes is to make sense of the idea of “dimension” of linear subspaces of R
n. An

intuitive idea of dimension might say that it is the number of parameters needed to specify a point, or the
number of degrees of freedom, in some sense. To make this idea formal, we have introduced the notions of
spanning set and linear independence. Roughly, the idea of a spanning set corresponds to having enough
parameters to describe points in the space, and the idea of linear independence corresponds to nonredundancy
among those parameters.

Let W ⊂ R
n be a linear subspace. A given set of vectors v1, . . . ,vk ∈ W might span W without being

linearly independent (i.e., they might be redundant); or, they might be linearly independent but not span
W . (Of course, they might also be neither linearly independent nor a spanning set.) A spanning set that
is not linearly independent is too large, and a linearly independent set that does not span is too small. A
basis for a linear subspace is a linearly independent spanning set. The size of a basis should be “just right”
to describe points in the subspace, in the following sense:

• Every vector in the subspace can be written as a linear combination of the basis vectors (because the
basis is a spanning set).

• There is only one way of writing a given vector as a linear combination of basis vectors (because they
are linearly independent).

With these observations in hand, we can make the following definition:

Definition 1. The dimension of a linear subspace is the number of vectors in a basis for that subspace.

But wait! What if different bases have different sizes? Which one determines the dimension? Fortunately,
this potential problem does not actually occur, but before we can start flippantly bandying about the word
dimension, we need to prove that that problem does not occur.

Lemma 2. Let W ⊂ R
n be a linear subspace spanned by v1, . . . ,vk. Then any set of k + 1 vectors in W is

linearly dependent.

Proof. We prove this lemma by induction, so let us begin with the case k = 1. That is to say, W is spanned
by just one vector, v1. We want to show that if u1 and u2 are any two vectors in W , then they are linearly
dependent. Because u1 and u2 are contained in W , they can be written in terms of the spanning set we
have for W , viz., the single vector v1:

u1 = c1v1

u2 = c2v1

(1)

To show that u1 and u2 are linearly dependent, we need to exhibit a nontrivial way of writing 0 as a linear
combination of them. Let us break it down into two cases (I did not do this explicitly in class).

Case 1. Both c1 and c2 are zero. This means u1 = u2 = 0, so any linear combination of them whatsoever
will give 0. For example, 5u1 + 3u2 = 0.

Case 2. The coefficients c1 and c2 are not both zero. From Equation (1), we can derive

c2u1 − c1u2 = 0. (2)

Since c1 and c2 are not both zero, this equation shows that u1 and u2 are linearly dependent, as desired.
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For the next part of the inductive proof, we assume the lemma to be true for k = m, and prove it for
k = m + 1. To reiterate our assumption, we suppose that in any subspace spanned by m vectors, any set of
m + 1 (or more) vectors is linearly dependent. We want now to show that if W is a space spanned by, say,
v1, . . . ,vm+1, then any set of m + 2 vectors in W , say u1, . . . ,um+2, must be linearly dependent. Since the
ui’s are in W , they can be written in terms of the vi’s.

u1 = c1,1v1 + c1,2v2 + · · · + c1,m+1vm+1

u2 = c2,1v1 + c2,2v2 + · · · + c2,m+1vm+1

...

um+2 = cm+2,1v1 + cm+1,2v2 + · · · + cm+2,m+1vm+1

We split the remainder of the argument into two cases, just as we did for k = 1.

Case 1. Suppose that the coefficients in the last column, c1,m+1, . . . , cm+2,m+1, are all zero. Let us
define the new subspace W ′ to be the linear span of v1, . . . ,vm. Since each of u1, . . . ,um+2 has a zero
coefficient for vm+1, it actually lies in the smaller subspace W ′. The ui’s are a set of m + 2 vectors sitting
in a subspace W ′ that is spanned by just m vectors, so the inductive assumption tells us that they must be
linearly dependent.

Case 2. On the other hand, we need to deal with the case that some of the ci,m+1’s are nonzero. Let us
suppose, in particular, that the last coefficient cm+2,m+1 is nonzero. (If some other coefficient were nonzero,
the proof would be the same, but the definition of the wi’s below would be changed slightly to use that
coefficient instead.) We form combinations of the ui’s analagous to that in (2), as follows:

w1 = cm+2,m+1u1 − c1,m+1um+2

w2 = cm+2,m+1u2 − c2,m+1um+2

...

wm+1 = cm+2,m+1um+1 − cm+1,m+1um+2

These combinations are designed so as to have the coefficients of vm+1 cancel out, just as the coefficients of
v1 cancelled in (2). That is, when the above expressions for the wi’s are exapnded out in terms of the vi’s,
we would see that each wi depends only on v1, . . . ,vm, and not on vm+1. Thus the vectors w1, . . . ,wm+1

are contained in the subspace W ′ spanned by v1, . . . ,vm. Our inductive assumption tells us that any set of
m + 1 vectors in W ′ must be linearly dependent, so there is some equation

d1w1 + · · · + dm+1wm+1 = 0,

where not all of the di’s are zero. If we substitute the definitions of the wi’s in this equation, we get

d1cm+2,m+1u1 + d2cm+2,m+1u2 + · · · + dm+1cm+2,m+1um+1

− (d1c1,m+1 + d2c2,m+1 + · · · + dm+1cm+1,m+1)um+2 = 0.

Since not all the di’s are zero, and since in particular cm+2.m+1 6= 0, this equation must contain some nonzero
coefficients. From this equation, we conclude that u1, . . . ,um+2 are linearly dependent, as desired.

Thus, once we have a spanning set, any larger set of vectors is automatically linearly dependent.

Theorem 3. Let W ⊂ R
n be a linear subspace. Every basis of W contains the same number of a vectors.

Proof. If we have two spanning sets for W of different sizes, the preceding lemma tells us that the bigger
one must necessarily be linearly dependent. So if we have two spanning sets that are also both linearly
independent, then they must contain the same number of vectors.
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