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Inverses and determinants of matrices are closely related and come up in many different contexts. In
these notes we will develop some basics of the theory of these ideas. Our initial motivation is the solution of
systems of linear equations, such as

2x − 5y + 4z = −3

x − 2y + z = 5

x − 4y + 6z = 10.

To solve the system, we want to manipulate these equations to get new equations which only contain one
variable each. What do we mean by “manipulate”? We can add (multiples of) one equation to another, or
we can multiply both sides of a single equation by a constant. And, of course, we are allowed to rearrange
the order of the equations if we want to. This process is encoded into a shorthand notation by the method of
Gauss-Jordan elimination. We write down just the coefficients of the above system in an augmented matrix,





2 −5 4
1 −2 1
1 −4 6

∣

∣

∣

∣

∣

∣

−3
5
10



 ,

to which we apply the three “moves” of Gauss-Jordan elimination:

1. Exchange two rows.

2. Add a multiple of one row to another.

3. Multiply a row by a constant.

On the other hand, we can regard the original system as a single, relatively innocuous-looking matrix
equation

Ax = b, where A =





2 −5 4
1 −2 1
1 −4 6



, x =





x

y

z



, and b =





−3
5
10



.

If Ax = b were an equation of real numbers, we could solve it just be dividing both sides by A. What is an
appropriate analogue of this in the world of matrices? We would like a matrix B such that BA = I; then,
we could solve Ax = b just by multiplying both sides of the equation on the left by B, and get x = Bb. Let
us start making this a bit more formal.

Definition 1. Let A be a k × n matrix. An n × k matrix B is called a left inverse of A if BA = I, and a
right inverse of A if AB = I.

It turns out that inverses of matrices are, in general, very poorly behaved in comparison to

R general matrices square matrices
every nonzero number may or may not have if it has a left or right

has an inverse left or right inverses inverse, it has both

there is only there many be many there is only one left
one inverse inverses on one side inverse and one right inverse,

or the other and they are equal
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Before we begin thinking too hard about inverses, let us make note of a relationship between Gauss-Jordan
moves and matrix multiplication.

Definition 2. The elementary Gauss-Jordan matrices, or just elementary matrices, are matrices obtained
by performing exactly one Gauss-Jordan move on the identity matrix.

There are three types of Gauss-Jordan matrices, one for each type of move. Typical examples are as follows:




0 1 0
1 0 0
0 0 1



 ,





1 0 0
0 1 3
0 0 1



 ,





1 0 0
0 1 0
0 0 5



 .

Every Gauss-Jordan move corresponds uniquely to some elementary matrix, and vice versa.

Proposition 3. Performing a particular Gauss-Jordan move on a matrix is equivalent to multiplying it on
the left by the appropriate corresponding elementary Gauss-Jordan matrix.

For example, if B is a 2 × 2 matrix, then ( 0 1
1 0 )B is the matrix obtained by exchanging the rows of B. We

shall not write out a formal proof of this fact; the reader is invited to verify it in detail.
Now, how do we find an inverse if there is one? Consider the matrix A from our earlier example. If A

has a right inverse, we can set up the following equation for it:




2 −5 4
1 −2 1
1 −4 6









a b c

d e f

g h i



 =





1
1

1





This matrix equation gives nine scalar equations in nine variables. But in fact we can split the equation up
by columns; for example,





2 −5 4
1 −2 1
1 −4 6









a

d

g



 =





1
0
0



 .

The second and third columns of the putative right inverse of A yield other equations like this. Each of
these three 3 × 3 vector equations could be solved by Gauss-Jordan elimination. In each case, the goal is to
perform moves until the left-hand side of the augmented matrix looks like I. So why not combine the three
equations into one larger augmented matrix and solve them all at once?

To reiterate, the procedure for finding the right inverse of A is to set up the augmented matrix




2 −5 4
1 −2 1
1 −4 6

∣

∣

∣

∣

∣

∣

1
1

1



 ,

and then perform Gauss-Jordan moves on it until the left-hand side looks like I. Then, the right-hand side
will contain the nine scalars we were solving for; in other words, the right-hand side will contain the right
inverse of A.

This procedure is applicable to finding right inverses of any matrix, and we can use it to find left inverses
by taking the transpose of the whole equation. But we are most interested in square matrices, for which
we will see that left and right inverses are the same. Henceforth, unless otherwise noted, all matrices are
assumed to be square.

Let us describe the right-inverse-finding procedure once again, this time algebraically using elementary
Gauss-Jordan matrices. Suppose A has a right inverse B. To find B, we set up the augmented matrix

(A | I),

and then we multiply on the left by elementary Gauss-Jordan matrices E1, . . . , Ek, until the left-hand side
of the augmented matrix becomes I. Then, the right-hand side ought to be B:

Ek · · ·E1(A | I) = (I | B).
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Let F = Ek · · ·E1. The above equation says F (A | I) = (I | B). We can split up this equation of augmented
matrices into two equations of square matrices:

FA = I FI = B

The second of these equations just says F = B; i.e., that F is the right inverse of A that we were looking
for. But the first equation, FA = I, says that F is a left inverse of A! Although we only assumed that A

had a right inverse, we got a left inverse of it for free. We have just proved the following:

Lemma 4. If A has a right inverse B, then B is also a left inverse of A.

Theorem 5. If A has either a left or right inverse, then it has both. Moreover, there is exactly one left
inverse and one right inverse of A, and they are equal.

(N.B.: This theorem fails in every possible way for nonsquare matrices. Generally nonsquare matrices
only have inverses on one side, if they have any at all; and when there is an inverse on side, there are usually
infinitely many inverses on that side.)

Proof. We have already seen that if A has a right inverse B, then B is also a left inverse for A. On the other
hand, suppose that A has a left inverse C:

CA = I.

We want to show that C is also a right inverse of A. But this equation says that A is a right inverse of C,
so Lemma 4 tells us that A must also be a left inverse of it; i.e.,

AC = I.

This equation says exactly that C is a right inverse of A.
We have seen that an inverse on either side of A is also an inverse on the other side; now we need to

show that there is only one such two-sided inverse. Suppose B and C are both two-sided inverses for A. In
particular, they are both right inverses:

AB = I = AC,

so, using the fact that B is also a left inverse,

AB − AC = A(B − C) = 0

BA(B − C) = B0

I(B − C) = 0

B = C.

Thus, if A has any left or right inverse, then it in fact has a unique two-sided inverse.

Definition 6. A square matrix with a left or right inverse is called invertible. Its unique two-sided inverse
is called simply its inverse; the inverse of a matrix A is denoted by A−1.

Again, note that the ideas of “inverse” and “invertible,” unmodified by “left” and “right,” do not make sense
for nonsquare matrices.

Let us go back to the proof of Lemma 4 and pull out a fact that will be useful to us in discussing
determinants. There, we saw that the right inverse of A was equal to a product F of elementary Gauss-
Jordan matrices. Now, every invertible matrix is a right inverse to some other matrix (viz., its own inverse),
so we conclude the following:

Proposition 7. Every invertible matrix can be written as a product of elementary Gauss-Jordan matrices.
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This proposition will turn out to be very important in our investigation of determinants, so it is natural to
wonder whether anything like this is true for noninvertible matrices. What happens if we try to invert a
noninvertible matrix by Gauss-Jordan elimination? We get the same result that occurs whenever one tries
to solve a system of linear equations that has no solution: we cannot actually obtain I on the left-hand side
of the augmented matrix; the best we can do is a matrix of the form

K =





















1
. . .

1
0

. . .

0





















. (1)

So if A is a noninvertible square matrix, and we try to find its right inverse by performing the Gauss-Jordan
moves given by elementary matrices E1, . . . , Ek, the resulting augmented matrix is described by

Ek · · ·E1(A | I) = (K |?).

(The right-hand side of the resulting augmented matrix is not really meaningful to us, since A does not
actually have a right inverse.) The left-hand parts of the augmented matrices give

Ek · · ·E1A = K,

or, using the following lemma,

A = E−1

1 · · ·E−1

k K. (2)

Lemma 8. Every elementary Gauss-Jordan matrix is invertible. Moreover, the inverse of an elementary
Gauss-Jordan matrix is again an elementary Gauss-Jordan matrix; the latter corresponds to undoing to
Gauss-Jordan move associated with the former.

Proof. Left as an exercise for the reader.

Equation (2) gives us the following analogue of Proposition 7:

Proposition 9. Every noninvertible matrix can be written as a product of elementary matrices, followed by
a matrix of the form shown in Equation (1).

Now, we are finally ready to start talking about determinants. We take an axiomatic approach to
determinants, as we did with the trigonometric functions in the first semester. We suppose that there is a
function

det : {n × n matrices} → R

having the following four properties (here we regard the rows of a matrix as a list of n vectors in R
n):

1. det
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3. If two rows ai and aj of a matrix are equal, then its determinant is zero.

4. det I = 1.

It can immediately be seen how the determinant changes in response to Gauss-Jordan moves on a matrix.
The following proposition was discussed in detail in class, and its proof will not be repeated here.

Proposition 10. (a) If two rows are exchanged, the determinant is multiplied by −1.

(b) If a multiple of one row is added to another, the determinant is unchanged.

(c) If a row is multiplied by a constant c, the determinant is also multiplied by c.

In particular, since the elementary Gauss-Jordan matrices are obtained by performing Gauss-Jordan
moves on I, whose determinant is 1, we can find the determinants of the elementary Gauss-Jordan matrices.
Since performing a Gauss-Jordan move is the same as multiplying on the left by an elementary matrix,
and since the change in determinant after such a move is precisely the determinant of the corresponding
elementary matrix, we have the following:

Lemma 11. If E is an elementary Gauss-Jordan matrix, and B is any matrix, then detEB = detE detB.

Now, Proposition 7 tells us that any invertible matrix is a product of elementary ones. Suppose A = E1 · · ·Ek

is invertible, where the Ei’s are elementary matrices. Then

detAB = detE1 · · ·EkB

= detE1 detE2 · · ·EkB

= detE1 · · ·det Ek detB

= detE1 · · ·det Ek−1Ek detB

= detE1 · · ·Ek det B

= detAdet B.

(Here we used the preceding lemma several times to pull elementary matrices in or out of a determinant.)
We have just shown:

Lemma 12. If A is invertible and B is any matrix, then detAB = det AdetB.

What if A is noninvertible? The simplest kind of noninvertible matrix is that of the type shown in
Equation (1). The matrix K shown there has 0 as its final row, so of course if we multiply that row by 0,
the matrix is unchanged. On the other hand, multiplying any row by 0 should multiply its determinant by
0 as well. This is only possible if detK = 0 to begin with.

Theorem 13. A matrix is invertible if and only if it has nonzero determinant.

Proof. If A is invertible, it is a product of elementary matrices, and its determinant is the product of the
determinants of those elementary matrices, each of which is nonzero, so detA 6= 0.

On the other hand, if A is noninvertible, it is a product of elementary matrices with a matrix of the
form of K, as discussed above. Again detA is the product of the determinants of these matrices, but since
detK = 0, we have detA = 0 as well.

Proposition 14. If A is not invertible, neither is AB for any matrix B.

Proof. If AB had an inverse C, then (AB)C = I. But this implies A(BC) = I, which says that BC is an
inverse of A. Since we have assumed A to be noninvertible, this is a contradiction.

Theorem 15. detAB = detAdet B.

Proof. We have already proved this when A is invertible, so we only need to prove it when A is not invertible.
In this case, AB is also not invertiable, so we have detAB = 0 = det A. It follows that detAB = det AdetB.
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Without noticing it, we have already proved that the determinant function must be unique. We have
seen that the axioms imply the values of the determinants of the elementary matrices and the noninvertible
matrix K; we know that every matrix can be written as a product of these types of matrices; and we know
how to treat determinants of products. In other words, from Propositions 7 and 9 and Theorem 15, it follows
that:

Proposition 16. There is at most one function satisfying the axioms for determinant. In other words,
provided that the determinant function exists, it is unique.

How might it fail to exist? It is not obvious a priori how to write down a function satisfying the four
axioms we have given, but nevertheless we almost have an algorithm for computing the determinant: just
do Gauss-Jordan elimination to find the kind of decomposition described in Proposition 7 or 9, and then
multiply together the determinants of the elementary matrices thus obtained. How could a function not
exist when we have a way to compute it?

The reason is that the Gauss-Jordan elimination process does not yield a unique answer. When we
perform Gauss-Jordan elimination, we have a great deal of choice in what moves to perform in what order.
If we have two different ways of writing A as a product of elementary matrices, which one do we use to
compute the determinant? Or do they give the same answer? In other words, the question of whether the
determinant function exists is a question of whether different sequences of Gauss-Jordan moves give the same
answer.

We will answer the question by giving an explicit formula for computing determinants and showing that
it satisfies the four axioms. It follows from what we have proved so far that any way of writing a matrix as
a product of elementary ones must give the same answer as that given by the formula. In practice, however,
especially for very large matrices, this formula is unwieldy. Engineers and computers in real life never use
this formula; they use Gauss-Jordan elimination.1

The formula in question is called “expansion by minors.” A minor is a smaller matrix obtained from
a given one by deleting some rows and columns. In particular, if A is an n × n matrix, let Aij be the
(n− 1)× (n− 1) minor obtained by deleting the ith row and jth column. Furthermore, let aij be the entry
in row i, column j of A. The formula in the following theorem is called “expansion by minors along the first
column”:

Theorem 17. The determinant of a 1 × 1 matrix is given by det(a) = a, and the determinants of larger
matrices are given by

detA =

n
∑

i=1

(−1)i+1ai1 detAi1

= a11 detA11 − a12 detA12 + · · · + (−1)n+1an1 detAn1.

(3)

Proof. We proceed by induction on the size of the matrix. For 1 × 1 matrices, it is utterly obvious that the
formula det(a) = a satisfies axioms 1, 2, and 4; and axiom 3 is inapplicable. Now we assume that there exists
a determinant function for (n− 1)× (n− 1) matrices, satisfying the four axioms. That is, we are allowed to
use the axioms when dealing with determinants of minors, but we are trying to prove that they hold for the
determinant of the whole matrix.

Suppose first that we multiply row i of A by a constant c. What happens in Equation (3)? In each term
ak1 detAk1 with k 6= i, the minor Ak1 contains part of row i, so we know (since it is an (n − 1) × (n − 1)
matrix) that its determinant gets multiplied by c. What about the term ai1 detAi1? Here the minor does
not contain row i, but the coefficient itself has been multiplied by c. Thus, every term of (3) gets multiplied
by c, so this formula satisfies Axiom 1.

Now, suppose row i of A contains a sum of two vectors,

ai + bi = (ai1, ai2, . . . , ain) + (bi1, bi2, . . . , bin).

We want to split up formula (3) into two determinants. Again, in every term ak1 detAk1 with k 6= 1, the
minor Ak1 contains part of the ith row of A, and its determinant can be split up into two determinants using

1If I am remembering correctly, computing the determinant of an n × n matrix by Gauss-Jordan elimination takes O(n2)
time, whereas computing it by the formula of expansion by minors takes O(n!) time.
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Axiom 2. On the other hand, the ith term is (ai1 + bi1) detAi1: here the minor does not contain row i of
A, but the coefficient can be split up to yield two terms ai1 det Ai1 + bi1 detAi1. Every term in (3) can be
split into two terms, therefore; and these can be regrouped to give the sum of two determinant expressions
as demanded by Axiom 2. Thus, Axiom 2 is satisfied.

Next, suppose that row i and row j of A are equal. Every minor Ak1, except k = i and k = j, will also
have a repeated row, and hence determinant 0. So nearly all the terms in (3) vanish; only the ith and jth
remain:

detA = (−1)i+1ai1 detAi1 + (−1)j+1aj1 detAj1. (4)

Let us assume, without loss of generality, that i < j. How are the minors Ai1 and Aj1 related? They are
obtained by deleting rows i and j, respectively, as well as column 1, from A. Since rows i and j are the same,
Ai1 and Aj1 contain the same entries, although the rows are rearranged somewhat. To get Ai1 from Aj1, we
would remove the ith row of Aj1, scoot rows i + 1, . . . , j − 1 up one row, and then insert the removed ith
row into the now-empty (j − 1)th row. For example, consider the 5 × 5 matrix

A =













0 1 8 3 6
4 6 5 3 0
6 5 8 0 7
2 8 7 4 2
4 6 5 3 0













.

The minors A51 and A21 are related as follows: we remove row 2, scoot rows 3 and 4 up one position, and
then insert the deleted row into row 4.

A51 =









1 8 3 6
6 5 3 0
5 8 0 7
8 7 4 2









7→









1 8 3 6

5 8 0 7
8 7 4 2









7→









1 8 3 6
5 8 0 7
8 7 4 2









7→









1 8 3 6
5 8 0 7
8 7 4 2
6 5 3 0









= A21.

Another way of looking at this is that we start Aj1, then exchange rows i and i + 1, then exchange rows
i + 1 and i + 2, etc., until at last we exchange rows j − 2 and j − 1. This has the effect of gradually pushing
what was originally row i down into position j − 1 while simultaneously scooting up the intermediate rows
by one position each. In all, we have to perform j − i − 1 row exchanges to change Aj1 into Ai1. These are
(n − 1) × (n − 1) matrices, so we know that exchanging rows multiplies the determinant by −1. Therefore,

det Ai1 = (−1)j−i−1 detAj1.

Plugging this back into (4), we get

detA = (−1)i+1ai1(−1)j−i−1 det Aj1 + (−1)j+1aj1 detAj1

= ((−1)j + (−1)j+1)aj1 detAj1

= 0.

(Recall that ai1 = aj1.) This is exactly what we wanted to show; we have established that Axiom 3 is
satisfied.

Finally, let us compute det I. All the ai1 are 0 except a11, so the formula in (3) has just one nonzero
term: det I = a11 det A11. Moreover, a11 = 1, and the minor A11 is just a smaller identity matrix, so we
know that it has determinant 1. Hence det I = 1, and Axiom 4 is satisfied as well.

We conclude that the determinant function exists and is given by the formula in (3).

Whew!
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