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In this set of notes, we will develop the basic theory of tensors and differential forms; we will learn what
it means to integrate a differential form; and we will state the generalized Stokes’ Theorem in terms of
differential forms. Caveat lector: there are several closely related meanings of the word tensor.

We begin introducing some convenient terminology for which we will not give precise definitions. A
manifold is a curve, surface, or higher-dimensional generalization thereof. We will often shorten the phrase
“manifold of dimension k” to “k-manifold.” When we integrate over a k-manifold M , we will need to make
use of a parametrization r : D → M , where D ⊂ R

k. If M ⊂ R
n, then we say the codimension of M is n− k.

Thus, curves are 1-manifolds. 2-manifolds sitting in R
3 have codimension 1, but if they sit in R

4, they have
codimension 2. Note that it makes sense to speak of “normal vectors” to manifolds of codimension 1.

In this set of notes, higher-dimensional integrals will never be written as multiple integrals.

Definition 1. A tensor of degree k, or a k-tensor, on R
n is a real-valued function of k variables, where

each input variable is a vector in R
n, such that the function is linear in each variable. That is, a tensor is a

function

T : R
n
× · · · × R

n

︸ ︷︷ ︸

k

→ R,

such that

T (v1, . . . , cvi + c′v′

i, . . . ,vk) = cT (v1, . . . ,vi, . . . ,vk) + c′T (v1, . . . ,v′

1, . . . ,vk)

for each i. By convention, a 0-tensor is a just a real constant.

The first thing to notice about tensors is that because they must be linear in each variable, then if we
specify the values of a tensor on the unit coordinate vectors e1, . . . , en of R

n, then that determines the
tensor uniquely.

What does this mean? Let us consider the simplest nontrivial case, that of a 1-tensor. This is just a linear
function T : R

n → R. If we know, for example, that T (e1) = a1, . . . , T (en) = an, then we can compute T (v)
for any vector v ∈ R

n. Suppose that

v = v1e1 + · · · + vnen;

then, by linearity of T , we must have

T (v) = v1a1 + · · · + vman.

This expression can be written more concisely: if we let a ∈ R
n be the vector a1e1 + · · · + anen, then

T (v) = a · v.

This discussion illustrates the relationship between vectors and tensors of degree 1. Indeed, the ideas in this
paragraph could be made into a rigorous proof of the following fact.
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Proposition 2. There is a one-to-one correspondence between vectors in R
n and tensors of degree 1 on R

n.

The correspondence is as follows: if T : R
n → R is a tensor, the corresponding vector is

(T (e1), . . . , T (en));

conversely, given a ∈ R
n, the corresponding tensor is defined by

T (v) = a · v.

Some people, such as physicists, do not distinguish between a vector and a 1-tensor. We say that a tensor
is determined by, or corresponds to, the list of n scalars a1, . . . , an, whereas a physicist might just say that
the tensor is the list of n scalars.

Let us now consider the next simplest case, that of tensors of degree 2. Again, because it is linear in each
variable, the tensor T : R

n × R
n is determined by its values on the unit coordinate vectors. But because T

is a function of two vector variables, we need to evaluate it on all pairs of unit coordinate vectors. Let

aij = T (ei, ej);

there are n2 such numbers. As we might expect, 2-tensors are closely related to n × n matrices, but the
algebra is more complicated than in the degree 1 case. The precise relationship is given in the following
proposition, which we state without proof.

Proposition 3. There is a one-to-one correspondence between n × n matrices and tensors of degree 2 on

R
n. The correspondence is as follows: if T : R

n × R
n → R is a tensor, the corresponding matrix is








T (e1, e1) T (e1, e2) · · · T (e1, en)
T (e2, e1) T (e2, e2) · · · T (e2, en)

...
...

. . .
...

T (en, e1) T (en, e2) · · · T (en, en)








;

conversely, given an n × n matrix A, the corresponding tensor is defined by

T (v,w) = v ·Aw.

Again, physicists often think of the array of scalars aij as being the tensor, whereas mathematicians think
of it as determining a tensor.

It is difficult to continue this analogy to tensors of degree greater than 2, but we can still make the
observation that a tensor is determined by its values on the unit coordinate vectors. If T is a k-tensor on
R

n, consider the constants

ai1i2...ik
= T (ei1 , ei2 , . . . , eik

).

There are n choices for which unit coordinate vector to use in the first variable, n choices for the second, and
so on, for a total of nk constants ai1i2...ik

. These nk constants determine the tensor. It is possible to imagine
these nk constants arranged in a k-dimensional array with n rows in each direction, but when k > 2, this is
not necessarily a useful way to think of tensors.

Given any two tensors S and T , there is an easy way to form a new tensor of higher degree out of them.

Definition 4. Let S be a k-tensor on R
n, and T an l-tensor. Their tensor product S ⊗ T is a new tensor of

degree k + l, defined by

(S ⊗ T )(v1, . . . ,vk+l) = S(v1, . . . ,vk)T (vk+1, . . . ,vk+l).

Definition 5. An alternating tensor of degree k on R
n is a k-tensor with the property that exchanging any

two of its input variables negates its value. That is, T is alternating if

T (v1, . . . ,vi, . . . ,vj , . . . ,vk) = −T (v1, . . . ,vj , . . . ,vi, . . . ,vk).

This condition is vacuously satisfied by all tensors of degree 0 and 1, so we say that all degree 0 or 1 tensors
are alternating. The set of all alternating k-tensors on R

n is denoted by
∧k

(Rn)∗.
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It turns out that in the correspondence between 2-tensors and matrices, alternating tensors correspond
precisely to skew-symmetric matrices. (This is why, in Problem Set 12, you integrated a skew-symmetric
matrix field over a 2-manifold in R

4—you were really integrating an alternating 2-tensor.)
We are now almost ready to give a general definition of integration.

Definition 6. Let A ⊂ R
n. A differential form of degree k on A, also called a k-form or an alternating

k-tensor field, is a function f : A →
∧k

(Rn)∗.

This last definition can be a little hard to get your head around: remember that the elements of
∧k

(Rn)∗

are tensors, which are themselves functions. So a differential form is a function that assigns to each point of
its domain another function! This is a little less mind-boggling if we instead think of a form as assigning an
array of nk constants to each point, but it is important to remember that if ω is a k-form, and x is a point
of its domain, then ω(x) is itself a function of k vector variables.

We take as given the definition and properties of k-dimensional integrals of scalar functions over regions
of R

k; i.e., ordinary multiple integrals. We now define integration of differential forms over manifolds in
terms of ordinary multiple integrals.

Definition 7. Let M be a k-manifold in R
n, and let r : D → M be a parametrization of it, where D ⊂ R

k.
Let ω be a k-form defined on some subset of R

n containing M . Let us write t1, . . . , tk for the variables in
R

k. Then, we define
∫

M

ω =

∫

D

ω

(
∂r

∂t1
, . . . ,

∂r

∂tk

)

.

As always, there is the question of whether this is well-defined; i.e., whether the value of
∫

M
ω depends

on the parametrization of M that we choose. This is why we need to require that ω be an alternating tensor
field and not an arbitrary one. Here is the desired fact, without proof:

Theorem 8. The integral of a k-form over a k-manifold is well-defined up to sign, independent of the

parametrization.

This fits well with what we have seen before for line integrals and surface integrals: a line integral changes
sign if the curve is parametrized in the opposite direction, and a surface integral changes sign if the opposite
normal direction is used. But in all these cases, the value of the integral is well-defined up to a sign.

The last major thing we need to do is to produce an analogue of the Second Fundamental Theorem.
Suppose that M is a k-manifold with boundary N , a (k−1)-manifold; and let ω be a (k−1)-form. Following
the pattern of the Second Fundamental Theorem, Green’s Theorem, Stokes’ Theorem, etc., we expect a
theorem that tells us that

∫

N
ω is equal to the integral of some related form over M , where that related form

should be obtained by doing some sort of differentiation on ω. It should also be a form of degree one greater
than that of ω, since M is a manifold of dimension one greater than that of N .

This is where we introduce the differential operator d. It has a uniform definition for all forms of all
degrees in all dimensions, instead of idiosyncratic definitions like those we have seen for curl, divergence, etc.
We will define it first for 0-forms, and then say how to compute the differential of a form of higher degree in
terms of differentials of lower-degree forms. To achieve this reduction, we need a way to get higher-degree
forms from lower-degree ones. The problem is that the tensor product operation ⊗ does not preserve the
property of being alternating. That is, even if S and T are both alternating tensors, S ⊗ T almost never is.

Before we can fix this problem, we need to investigate in much greater detail what it means for a tensor
to be alternating. An arbitrary k-tensor is determined by nk constants, but most tensors are not alternating,
so it should take a lot fewer constants to determine an alternating tensor. We have already seen this with
4 × 4 skew-symmetric matrices: it takes 16 numbers to determine a 2-tensor on R

4, but only 6 numbers to
determine an alternating 2-tensor on R

4. (There are 6 numbers to specify in giving a 4 × 4 skew-symmetric
matrix.)

How does this come about? To say T is alternating is to say that exchanging any two input variables
changes the sign of the answer. It follows that if any two input variables to T are equal, the output value
must be 0 (since it must equal its own negative). Thus, among the constants

ai1i2...ik
= T (ei1 , ei2 , . . . , eik

),
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we get 0 whenever two of the indices i1, . . . , ik are equal. (Hence the 0’s along the diagonal of a skew-
symmetric matrix.) The constants can be nonzero only if all k indices in the subscript are distinct. Moreover,
the alternating property means that

ai1...ip...iq ...ik
= −ai1...iq ...ip...ik

.

Any rearrangement of the indices can be achieved by a series of exchanges like this, so there is really only
parameter to be determined among all the possible rearrangements of i1 . . . ik. (Thus there 12 nonzero
entries in a skew-symmetric matrix, but 6 of them are the negatives of the other 6, so there are really
only 6 parameters to be determined.) Hence, the number of parameters needed to determine an alternating
k-tensor is equal to the number of ways of choosing k distinct vectors from among the n unit coordinate
vectors e1, . . . , en. This is given by

(
n

k

)

=
n!

k!(n − k)!
.

And, indeed, it takes ( 4
2 ) = 6 parameters to determine an alternating 2-tensor on R

4. One consequence of
this is that, on R

n, there are no alternating tensors of degree greater than n (except the zero tensor).
In any case, let us return to examining the constants ai1...ik

. Recall that a permutation σ of a set k

objects is just a rearrangement of them. If σ is any such permutation, we have

ai1...ik
= ±aσ(i1...ik).

Any permutation can be performed by doing a sequence of pairwise exchanges; the sign on the left-hand side
of the above equation depends on whether the number of such exchanges required is odd or even.

Definition 9. The sign of a permutation σ, denoted by sgnσ, is either +1 or −1, whichever appears as the
coefficient on the left-hand side of the above equation. A permutation with sign +1 is called even, and one
with sign −1 is called odd.

An important point to note here is that the sign of a permutation is an intrinsic property of the permu-
tation, having nothing to do with tensors or forms.

Definition 10. Let S be an alternating k-tensor on R
n, and T and alternating l-tensor. Their exterior or

wedge product S ∧ T is a new alternating tensor of degree k + l, defined by

(S ∧ T )(v1, . . . ,vk+l) =
1

k!l!

∑

all permutations σ
of k + l objects

(sgnσ)(S ⊗ T )(σ(v1, . . . ,vk+l)).
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