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In this set of notes, we will develop the basic theory of tensors and differential forms; we will learn what
it means to integrate a differential form; and we will state the generalized Stokes’ Theorem in terms of
differential forms. Caveat lector: there are several closely related meanings of the word tensor.

We begin introducing some convenient terminology for which we will not give precise definitions. A
manifold is a curve, surface, or higher-dimensional generalization thereof. We will often shorten the phrase
“manifold of dimension £” to “k-manifold.” When we integrate over a k-manifold M, we will need to make
use of a parametrization v : D — M, where D C R*. If M C R™, then we say the codimension of M is n — k.
Thus, curves are 1-manifolds. 2-manifolds sitting in R? have codimension 1, but if they sit in R?, they have
codimension 2. Note that it makes sense to speak of “normal vectors” to manifolds of codimension 1.

In this set of notes, higher-dimensional integrals will never be written as multiple integrals.

Definition 1. A tensor of degree k, or a k-tensor, on R" is a real-valued function of k£ variables, where
each input variable is a vector in R™, such that the function is linear in each variable. That is, a tensor is a
function

T:R"x---xR" = R,
—— —
k

such that
A / /!
T(vi,.o.,evi+ Voo vi) =cT (v, ..., Vi, o Vi) + T (Ve .00,V oo VE)
for each i. By convention, a 0-tensor is a just a real constant.

The first thing to notice about tensors is that because they must be linear in each variable, then if we
specify the values of a tensor on the unit coordinate vectors ej,...,e, of R™ then that determines the
tensor uniquely.

What does this mean? Let us consider the simplest nontrivial case, that of a 1-tensor. This is just a linear
function T : R™ — R. If we know, for example, that T'(e1) = a1,...,T(e,) = an, then we can compute T'(v)
for any vector v € R™. Suppose that

V =v1€] + - - + Uney;
then, by linearity of T', we must have
T(v) =via1 + - + Vyman.
This expression can be written more concisely: if we let a € R™ be the vector a1e; + - - - + ape,, then
T(v)=a-v.

This discussion illustrates the relationship between vectors and tensors of degree 1. Indeed, the ideas in this
paragraph could be made into a rigorous proof of the following fact.



Proposition 2. There is a one-to-one correspondence between vectors in R™ and tensors of degree 1 on R™.
The correspondence is as follows: if T : R™ — R s a tensor, the corresponding vector is

(T(e1),...,T(en));
conversely, given a € R™, the corresponding tensor is defined by
T(v)=a-v.

Some people, such as physicists, do not distinguish between a vector and a 1-tensor. We say that a tensor
is determined by, or corresponds to, the list of n scalars aq, ... ,a,, whereas a physicist might just say that
the tensor is the list of n scalars.

Let us now consider the next simplest case, that of tensors of degree 2. Again, because it is linear in each
variable, the tensor T': R” x R™ is determined by its values on the unit coordinate vectors. But because T’
is a function of two vector variables, we need to evaluate it on all pairs of unit coordinate vectors. Let

aij = T(ei, ej);

there are n? such numbers. As we might expect, 2-tensors are closely related to n x n matrices, but the

algebra is more complicated than in the degree 1 case. The precise relationship is given in the following
proposition, which we state without proof.

Proposition 3. There is a one-to-one correspondence between n X n matrices and tensors of degree 2 on
R™. The correspondence is as follows: if T : R™ x R™ — R is a tensor, the corresponding matriz is

T(e1,e1) T(ei,ez) --- T(er,ey)
T(ez,e1) T(ez,e3) - T(ea, ey)
T(en,e1) T(ep,e3) -+ T(epep)

conversely, given an n X n matriz A, the corresponding tensor is defined by
T(v,w)=v-:Aw.

Again, physicists often think of the array of scalars a;; as being the tensor, whereas mathematicians think
of it as determining a tensor.

It is difficult to continue this analogy to tensors of degree greater than 2, but we can still make the
observation that a tensor is determined by its values on the unit coordinate vectors. If T' is a k-tensor on
R™, consider the constants

Qivig..iy = T(€iy,€ig, ... ,€5).

There are n choices for which unit coordinate vector to use in the first variable, n choices for the second, and
so on, for a total of n¥ constants Qiqig..in- Lhese n* constants determine the tensor. It is possible to imagine
these n* constants arranged in a k-dimensional array with n rows in each direction, but when k > 2, this is
not necessarily a useful way to think of tensors.

Given any two tensors S and T, there is an easy way to form a new tensor of higher degree out of them.

Definition 4. Let S be a k-tensor on R", and T an [-tensor. Their tensor product S ® T is a new tensor of
degree k + [, defined by

(SOT)(Visers ,Viest) = SV1s o VR T (Vig1, - s Vit).

Definition 5. An alternating tensor of degree k on R” is a k-tensor with the property that exchanging any
two of its input variables negates its value. That is, T is alternating if

T(Vi,eooyVigeo oy, Viy oo, Vi) = =T (V1,0 , Vi, oo, Vi oot V).

This condition is vacuously satisfied by all tensors of degree 0 and 1, so we say that all degree 0 or 1 tensors
are alternating. The set of all alternating k-tensors on R" is denoted by /\k(R”)*.



It turns out that in the correspondence between 2-tensors and matrices, alternating tensors correspond
precisely to skew-symmetric matrices. (This is why, in Problem Set 12, you integrated a skew-symmetric
matrix field over a 2-manifold in R*—you were really integrating an alternating 2-tensor.)

We are now almost ready to give a general definition of integration.

Definition 6. Let A C R™. A differential form of degree k on A, also called a k-form or an alternating
k-tensor field, is a function f : A — /\k(R”)*.

This last definition can be a little hard to get your head around: remember that the elements of /\k(R")*
are tensors, which are themselves functions. So a differential form is a function that assigns to each point of
its domain another function! This is a little less mind-boggling if we instead think of a form as assigning an
array of n* constants to each point, but it is important to remember that if w is a k-form, and x is a point
of its domain, then w(x) is itself a function of k vector variables.

We take as given the definition and properties of k-dimensional integrals of scalar functions over regions
of R¥; i.e., ordinary multiple integrals. We now define integration of differential forms over manifolds in
terms of ordinary multiple integrals.

Definition 7. Let M be a k-manifold in R”, and let r : D — M be a parametrization of it, where D C R¥.
Let w be a k-form defined on some subset of R™ containing M. Let us write ¢1,... ,t; for the variables in

R¥. Then, we define
/ / < Or or >
w=[| wl=—,...,— .
M D atl atk

As always, there is the question of whether this is well-defined; i.e., whether the value of [ @ depends
on the parametrization of M that we choose. This is why we need to require that w be an alternating tensor
field and not an arbitrary one. Here is the desired fact, without proof:

Theorem 8. The integral of a k-form over a k-manifold is well-defined up to sign, independent of the
parametrization.

This fits well with what we have seen before for line integrals and surface integrals: a line integral changes
sign if the curve is parametrized in the opposite direction, and a surface integral changes sign if the opposite
normal direction is used. But in all these cases, the value of the integral is well-defined up to a sign.

The last major thing we need to do is to produce an analogue of the Second Fundamental Theorem.
Suppose that M is a k-manifold with boundary N, a (k — 1)-manifold; and let w be a (k—1)-form. Following
the pattern of the Second Fundamental Theorem, Green’s Theorem, Stokes’ Theorem, etc., we expect a
theorem that tells us that | N W is equal to the integral of some related form over M, where that related form
should be obtained by doing some sort of differentiation on w. It should also be a form of degree one greater
than that of w, since M is a manifold of dimension one greater than that of N.

This is where we introduce the differential operator d. It has a uniform definition for all forms of all
degrees in all dimensions, instead of idiosyncratic definitions like those we have seen for curl, divergence, etc.
We will define it first for 0-forms, and then say how to compute the differential of a form of higher degree in
terms of differentials of lower-degree forms. To achieve this reduction, we need a way to get higher-degree
forms from lower-degree ones. The problem is that the tensor product operation ® does not preserve the
property of being alternating. That is, even if S and T" are both alternating tensors, S ® T" almost never is.

Before we can fix this problem, we need to investigate in much greater detail what it means for a tensor
to be alternating. An arbitrary k-tensor is determined by n* constants, but most tensors are not alternating,
so it should take a lot fewer constants to determine an alternating tensor. We have already seen this with
4 x 4 skew-symmetric matrices: it takes 16 numbers to determine a 2-tensor on R, but only 6 numbers to
determine an alternating 2-tensor on R%. (There are 6 numbers to specify in giving a 4 x 4 skew-symmetric
matrix.)

How does this come about? To say T is alternating is to say that exchanging any two input variables
changes the sign of the answer. It follows that if any two input variables to T' are equal, the output value
must be 0 (since it must equal its own negative). Thus, among the constants

Qivig..iy = T(€iy, @iy, ... ,€5),



we get 0 whenever two of the indices i1,... i are equal. (Hence the 0’s along the diagonal of a skew-
symmetric matrix.) The constants can be nonzero only if all £ indices in the subscript are distinct. Moreover,
the alternating property means that

ail...ip...iq...ik - _ail...iq...ip...ik .

Any rearrangement of the indices can be achieved by a series of exchanges like this, so there is really only
parameter to be determined among all the possible rearrangements of i ...i;. (Thus there 12 nonzero
entries in a skew-symmetric matrix, but 6 of them are the negatives of the other 6, so there are really
only 6 parameters to be determined.) Hence, the number of parameters needed to determine an alternating
k-tensor is equal to the number of ways of choosing k distinct vectors from among the n unit coordinate

vectors eq, ... ,ey,. This is given by
my___n
k) kl(n—k)

And, indeed, it takes (4) = 6 parameters to determine an alternating 2-tensor on R*. One consequence of
this is that, on R™, there are no alternating tensors of degree greater than n (except the zero tensor).

In any case, let us return to examining the constants a;,. ;.. Recall that a permutation o of a set k
objects is just a rearrangement of them. If ¢ is any such permutation, we have

a/il...ik = :l:a/d(il...ik)'

Any permutation can be performed by doing a sequence of pairwise exchanges; the sign on the left-hand side
of the above equation depends on whether the number of such exchanges required is odd or even.

Definition 9. The sign of a permutation o, denoted by sgn o, is either +1 or —1, whichever appears as the
coeflicient on the left-hand side of the above equation. A permutation with sign +1 is called even, and one
with sign —1 is called odd.

An important point to note here is that the sign of a permutation is an intrinsic property of the permu-
tation, having nothing to do with tensors or forms.

Definition 10. Let S be an alternating k-tensor on R™, and 7" and alternating [-tensor. Their ezterior or
wedge product S AT is a new alternating tensor of degree k + [, defined by

(SATY (V1. VEtl) = ﬁ Z (sgno)(S@T)(o(Viy... s Vitr))-

all permutations o
of k + [ objects



