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In this problem set you will prove an analogue of the Fundamental Theorem
of Calculus, Stokes’ Theorem, etc. To set up the context of the problem, let us
define an operator div◦ on vector fields on R

2 by

div◦(P (x, y)i + Q(x, y)j) =
∂Q

∂x
−

∂P

∂y
.

Let C denote a curve in R
n with endpoints a and b. Let S denote a surface

whose boundary is the closed curve BdS. Let V denote a solid region in R
3 with

boundary BdV . The following table summarizes the state of our knowledge of
integration theory in three or fewer dimensions.
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∫ b

a
Df = f(b)− f(a)

∫

C
grad f = f(b)− f(a)

∫

C
grad f = f(b)− f(a)

∫∫

S
div◦

f =
∫

Bd S
f

∫∫

S
curl f =

∫

Bd S
f

∫∫∫

V
div f =

∫∫

Bd V
f

div◦ grad f = 0 curl grad f = 0

div curl f = 0

There is a theme running through all these theorems: roughly, the above table
can be summarized by the following two statements:

(a) An integral of an appropriately “differentiated” function over a region R
can be evaluated by an integral of one lower dimension: specifically, the
integral of the original function over the boundary of R.
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(b) “Appropriately differentiating” a function that has already been appro-
priately differentiated function always gives 0.

Here, the meaning of “appropriately differentiated” depends on context. We
expect that the analogous theory in R

4 will have four kinds of “appropriate dif-
ferentiation” operators, four theorems that reduce the dimension of an integral,
and three theorems about repeated differentiation giving zero.

An additional leap is required in the setting of R
4: we need to introduce

matrix-valued functions (or matrix fields), and we shall need to define integration
of matrix fields over 2-dimensional surfaces in R

4.

Skew-Symmetric Matrices and Differentiation in R
4

A skew-symmetric matrix is a square matrix equal to the negative of its
transpose. In other words, if aij denotes the entry in row i, column j of a
matrix A, then we say that A is skew-symmetric if aij = −aji for every i, j. Let
S(n) denote the set of all n× n skew-symmetric matrices.

For example,
(

0 1 2
−1 0 3
−2 −3 0

)

is a 3 × 3 skew-symmetric matrix. Note that the

entries on the diagonal must be 0, since they are required to be their own
negatives.

If f : R
4 → R

4 is a vector field, say

f(x, y, z, w) = P e1 + Q e2 + R e3 + S e4,

then we define a new skew-symmetric matrix field, called twist f : R
4 → S(4),

by

twist f =











0 ∂Q
∂x
− ∂P

∂y
∂R
∂x
− ∂P

∂z
∂S
∂x
− ∂P

∂w
∂P
∂y
− ∂Q

∂x
0 ∂R

∂y
− ∂Q

∂z
∂S
∂y
− ∂Q

∂w
∂P
∂z
− ∂R

∂x
∂Q
∂z
− ∂R

∂y
0 ∂S

∂z
− ∂R

∂w
∂P
∂w
− ∂S

∂x
∂Q
∂w
− ∂S

∂y
∂R
∂w
− ∂S

∂z
0











Next, if g : R
4 → S(4) is a skew-symmetric matrix field, say

g(x, y, z, w) =









0 A B C
−A 0 D E
−B −D 0 F
−C −E −F 0









,

then we define a new vector field, called sping : R
4 → R

4, by the formula

sping =

(

+
∂F

∂y
−

∂E

∂z
+

∂D

∂w

)

e1 +

(

−
∂F

∂x
+

∂C

∂z
−

∂B

∂w

)

e2

+

(

+
∂E

∂x
−

∂C

∂y
+

∂A

∂w

)

e3 +

(

−
∂D

∂x
+

∂B

∂y
−

∂A

∂z

)

e4.
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In addition to twist and spin, we also have the grad and div operators, defined
exactly as they are in R

3.

Integration in R
4

Now we need to discuss integration in R
4. Line integrals are easy: we have

dealt with integrating vector fields along curves in full generality, and it works
the same way in R

4 as in lower dimensions. If C is a curve and f is a vector
field, then

∫

C
f is defined by

∫

C

f =

∫ b

a

f(r(t)) · r′(t),

where r : [a, b]→ R
4 is a parametrization of the curve.

Two-dimensional integrals in R
4 are in some sense the hardest. In this setting

the most natural type of function to integrate turns out to be neither scalar fields
nor vector fields, but rather skew-symmetric matrix fields. Why is this? In lower
dimensions, whenever we integrate a vector field, we convert it into a scalar
function by taking the dot product with a tangent or normal vector gotten from
a parametrization, and then integrate that scalar field over the parametrizing
region by an ordinary multiple integral. But for two-dimensional integrals in
R

4, there is no single tangent or normal direction to dot with. Indeed, at every
point on the surface there is a whole two-dimensional plane of tangent vectors,
and another two-dimensional plane of normal vectors. So the kind of function
we integrate over a two-dimensional surface in R

4 should be something that can
give us a scalar when we combine it with two vectors, not just dot it with one.
Skew-symmetric matrices fit the bill.

If q is a vector in R
4 and A is a 4×4 skew-symmetric matrix, then Aq is an-

other vector. (Remember that vectors ought to be regarded as column matrices;
i.e., v can be thought of as a 4× 1 matrix. Then the matrix multiplication Av

makes sense, and the answer is another 4×1 matrix—in other words, a vector.)
If p is another vector in R

4, then we can form the dot product p ·Aq, and get
a scalar. (Actually, the operation p ·Aq makes sense for any 4× 4 matrix, not
just skew-symmetric ones, but it turns out that the definition of integration we
are about to give is not independent of the parametrization unless the matrix
field is skew-symmetric.)

This is exactly what we do with skew-symmetric matrix fields over two-
dimensional surfaces. Let r : D → R

4 be a parametrization of a surface S,
where D ⊂ R

2, and let us use the letters s and t for the coordinates in R
2. Each

partial derivative ∂r/∂s and ∂r/∂t is a function D → R
4; and each of these gives

a tangent vector to the surface parametrized by r. If F is a skew-symmetric
matrix field, we define

∫∫

S
F by

∫∫

S

F =

∫∫

D

∂r

∂s
· F(r(s, t))

∂r

∂t
.

Before we tackle three-dimensional integrals, it will be helpful to recall the
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R
4 analogue of cross product: the vector given by the mnemonic formula

det









e1 e2 e3 e4

←− a −→
←− b −→
←− c −→









is perpendicular to each of the vectors a, b, and c. Let us introduce the notation

Ξ(a,b, c)

for this vector.
Three-dimensional integrals in R

4 are very similar to two-dimensional (sur-
face) integrals in R

3. In R
3, to integrate a vector field over a surface, we take

its dot product with a normal vector to the surface, and then integrate the re-
sulting scalar over the subset of R

2 that parametrizes the surface. To integrate
a vector field over a three-dimensional surface in R

4, we do the same thing:
take its dot product with a normal vector, and triple-integrate the resulting
scalar function over the subset of R

3 that parametrizes the surface. How do we
find such a normal vector? For two-dimensional integrals in R

3, we got it as
the cross product of the partial derivatives of the parametrizing function. For
three-dimensional integrals in R

4, the parametrizing function has three partial
derivatives, and we use “Ξ” instead of cross product. Let S ⊂ R

4 be a three-
dimensional surface parametrized by r : D → R

4, where D ⊂ R
3, and let s, t,

and u be the coordinates on R
3. Then, the integral of a vector field f over S is

defined by

∫∫∫

S

f =

∫∫∫

D

f(r(s, t, u)) · Ξ

(

∂r

∂s
,
∂r

∂t
,
∂r

∂u

)

.

Finally, we know how to integrate scalar functions over four-dimensional
subsets of R

4—such integrals are just ordinary quadruple integrals, and we
have dealt with multiple integrals of scalar functions in full generality.

For one-, two-, and three-dimensional integrals, there is a theorem that says
the value of a given integral does not depend on the parametrization used (except
possibly up to a minus sign). We proved this in class for line integrals in
full generality. The idea of the proof for two- or three-dimensional integrals
is similar, but depends on having a change-of-variables theorem for double or
triple integrals, respectively. (Of course, there is no such theorem for four-
dimensional integrals in R

4, since there is no parametrization involved in any
multiple scalar integral.)

Epilogue

The differentiation operators we have set up for R
4 are related as shown in

the table below. In the course of this discussion, you have seen that integration
in R

4 is much more complicated than in R
3, but that there is a pattern. In
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scalar fields




y
grad

vector fields




y
twist

skew-symmetric matrix fields




y

spin

vector fields




y
div

scalar fields

Table 1: Differentiation operators in R
4

R
5, there are five differentiation operators, one of which takes a matrix field

and gives back another matrix field, but in R
6, we run into trouble. Vector

and matrix fields don’t suffice for describing integration over three-dimensional
subsets of R

6.
The solution is to introduce the idea of tensors, an algebraic construction of

which vectors and matrices can be thought of as special cases (sometimes called
“degree 1” and “degree 2” tensors, respectively). The language of tensors is the
starting point of multilinear algebra, just as vectors are the starting point of
linear algebra. In this new, general setting, the only kind of function one ever
integrates are tensor fields. Even scalar functions can be thought of as “degree
zero” tensor fields. (To be more precise, we only integrate “alternating” tensor
fields—this corresponds to the fact that we only integrate skew-symmetric, and
not arbitrary, matrix fields on two-dimensional surfaces in R

4.)
We also need tensorial replacements for differentiation operators like curl,

grad, or twist. Here we get to see how powerful and useful an idea the concept of
a tensor actually is: rather than many complicated, tedious, different formulas
that must be worked out individually in every dimension, there is just one,
unified formula. The result of applying this formula to an alternating tensor
field is also an alternating tensor field, but of one degree higher (cf. the gradient
of a scalar field is a vector field, and the twist of a vector field is a matrix field).
This all-encompassing operation is called the “differential” of a tensor field, and
it is denoted by the mysterious symbol which we have shunned all year, the
lowercase letter d.

With tensors and the differential in our pockets, we can prove a theorem that
encompasses the Second Fundamental Theorem and all its generalizations, and
extends to arbitrarily many dimensions. It says that if M is a k-dimensional

5



subset of R
n, with a (k − 1)-dimensional boundary denoted by BdM , and if ω

is an alternating tensor field on M of degree k − 1, then
∫

M

dω =

∫

Bd M

ω.

With this glimpse of one of the most important and beautiful theorems of
higher-dimensional calculus, our studies draw to a close. I wish each of you the
best for your sophomore years and all your future endeavours in life. Thanks
for a great year.

Problems

1. State the four integration theorems and three repeated differentiation the-
orems that hold in R

4.

2. Choose one of the repeated differentiation theorems and prove it.

3. Let S3(r) = {x ∈ R
4 | ‖x‖ = r}, where r is some fixed positive constant.

This is called the “3-sphere of radius r.”

(a) Find a unit normal vector field to S3(r).

(b) Integrate this vector field over S3(r). This will give you the 3-
dimensional volume (surface area?) of the 3-sphere.

(c) (Optional) On Problem Set 10 you computed the (4-dimensional)
volume of B4(r). How are these two formulas related? Compare also
the formulas for lower-dimensional balls and spheres. Formulate a
conjecture about the relationship between the volumes of Bn(r) and
Sn−1(r) in general.

4. Consider the 2-dimensional surface T in R
4 given by the equations

x2 + y2 = 1

z2 + w2 = 1,

and the matrix field given by

F(x, y, z, w) =









0 0 0 y/z
0 0 −x/w 0
0 x/w 0 0
−y/z 0 0 0









.

Compute
∫∫

T
F.

5. Choose one of the integration theorems in R
4 other than the gradient

theorem, and prove it. You may make reasonable simplifying assumptions
about the regions of integration and the functions involved, much as we
did in our partial proofs of Green’s, Stokes’ and Gauss’ Theorems in class,
but be sure to state explicitly what assumptions you make.
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