18.024–ESG Problem Set 5

Pramod N. Achar

Spring 2000

Tuesday

- 1. For each of the following curves, find the unit tangent vector \mathbf{t} and the unit normal vector \mathbf{n} as functions of t. Then find a parametric equation for the osculating plane to the curve at t = 0.
 - (a) $\mathbf{r}(t) = (3t t^3)\mathbf{i} + 3t^2\mathbf{j} + (3t + t^3)\mathbf{k}$
 - (b) $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + e^t \mathbf{k}$
- 2. Compute the curvature $\kappa(t)$ for each of the two curves given in Problem 1.
- 3. (Optional) What is the nonmathematical meaning of the verb to osculate?

Friday

- 4. Exercise 1 in Section 14.19 of Apostol, Volume I.
- 5. Suppose we are given a curve in \mathbb{R}^2 in polar coordinates, $r = f(\theta)$ $(a \le \theta \le b)$. Show that the arc length of this curve is given by

$$\int_{\theta=a}^{b} \sqrt{f(\theta)^2 + f'(\theta)^2}.$$

(*Hint*: First describe the curve parametrically with a function of the form $\mathbf{r} : [a, b] \to \mathbb{R}^2$, and then use the formula we proved in class for the arc length of a curve given in this form.)