
Math 1550 Fall 2005
Section 31 P. Achar

Extra Credit Solutions
Due: December 6, 2005

1. (3 points) A 4-sphere is made by stacking up cross-sections that are 3-spheres. Following the pattern
from 2- and 3-spheres, set up an integral for the 4-volume of a 4-sphere of radius r.

Solution: Imagine a 4-sphere of radius r centered at the origin in 4-dimensional space. If you take a
“slice” perpendicular to the x-axis, you get a 3-sphere. Moreover, the radius of that slice is

√
r2 − x2.

The possible values of x are from −r to r, so to compute the 4-volume by cross-sections, we set up the
integral:

∫ r

−r

(
3-volume of the

cross-section

)
dx =

∫ r

−r

(
3-volume of a 3-sphere

of radius
√

r2 − x2

)
dx

=
∫ r

−r

4
3
π(

√
r2 − x2)3 dx

2. (2 points) Find the formula for the 4-volume of a 4-sphere by evaluating the integral you have set up.
(Doing this from scratch requires techniques that we haven’t learned yet, but you can do it using the
integral tables in the back of the textbook.)

Solution:∫ r

−r

4
3
π(

√
r2 − x2)3 dx

=
4
3
π

∫ r

−r

(r2 − x2)3/2 dx

for the next step, use formula #37 from the integral tables at the back of the book

=
4
3
π

(
−x

8
(2x2 − 5r2)

√
r2 − x2 +

3r4

8
sin−1 x

r

) ∣∣∣
r

−r

=
4
3
π

((
−r

8
(2r2 − 5r2)

√
r2 − r2 +

3r4

8
sin−1 r

r

)
−

(
r

8
(2r2 − 5r2)

√
r2 − r2 +

3r4

8
sin−1 −r

r

))

=
4
3
π

(
3r4

8
sin−1 1− 3r4

8
sin−1(−1)

)

=
4
3
π · 3r4

8

(π

2
−

(
−π

2

))
=

4
3
π · 3r4

8
π

=
1
2
π2r4.

3. (Extra Extra Credit—2 points) Find the 5-volume of a 5-sphere of radius r. (Since the cross-sections
of a 5-sphere are 4-spheres, you need to have the correct formula for the 4-volume of a 4-sphere in
order to do this problem.)

Solution: The set-up is the same as in lower-dimensions: we find the 5-volume by integrating the
4-volume of 4-dimensional cross-sections. The cross-section at a given value of x is a 4-sphere whose
radius is

√
r2 − x2.



∫ r

−r

1
2
π2(

√
r2 − x2)4 dx

=
1
2
π2

∫ r

−r

(r2 − x2)2 dx =
1
2
π2

∫ r

−r

(r4 − 2r2x2 + x4) dx

=
1
2
π2

(
r4x− 2r2x3

3
+

x5

5

) ∣∣∣
r

−r

=
1
2
π2

((
r5 − 2r5

3
+

r5

5

)
−

(
−r5 +

2r5

3
− r5

5

))
=

1
2
π2

(
16
15

r5

)

=
8
15

π2r5.

4. (Super Ultra Extra Credit—5 points) Find a general formula (in terms of n) for the n-volume of an
n-sphere. Actually, it turns out that the volumes of even-dimensional spheres follow one pattern, and
those of odd-dimensional spheres follow another. So you should actually find two formulas: one that’s
valid when n is even, and the other when n is odd.

Solution: The key to deriving the formulas in the general case is to go up two dimensions at once. This
turns out to be more or less a “volume by cylindrical shells” problem, much as the previous parts were
“volume by cross-sections.” Imagine an n-sphere of radius r centered at the origin in n-dimensional
space. In the earlier problems, you used the fact that the cross-sections perpendicular to the x-axis are
(n − 1)-spheres of various radii. Similarly, a sliver of the n-sphere that’s perpendicular to the entire
xy-plane is an (n− 2)-sphere.
Going the other way, imagine attaching an (n − 2)-sphere to each point on the positive x-axis from
x = 0 to x = r, in such a way that it is perpendicular to the xy-plane. (Try imagining it in the case
n = 3 if you have difficulty with the general case.) The radius of the (n − 2)-sphere attached at a
given x-value should be

√
r2 − x2. This gives you an (n− 1)-dimensional solid. Now, form a “solid of

revolution” by rotating this shape around on the xy-plane. The resulting object is the n-sphere.
Let Vn(r) denote the n-volume of the n-sphere of radius r. The n-dimensional version of the cylindrical
shells formula says that

Vn(r) =
∫ r

0

2πx ·
(

(n− 2)-volume of the (n− 2)-sphere attached at x

)
dx

=
∫ r

0

2πxVn−2(
√

r2 − x2) dx.

Now, we know that Vn−2(r) is of the form arn−2, where a is some constant. Now, we can evaluate this
integral by substitution:

Vn(r) =
∫ r

0

2πx · a(
√

r2 − x2)n−2 dx substitute u = r2 − x2, du = −2x dx

=
∫ x=r

x=0

πa(
√

u)n−2 · −du change endpoints of the integral:

= −
∫ 0

r2
πau

n−2
2 du x = 0 =⇒ u = r2 and x = r =⇒ u = 0

= − πau
n−2

2 +1

n−2
2 + 1

∣∣∣∣∣

0

r2

= − πaun/2

n/2

∣∣∣∣
0

r2

since
n− 2

2
+ 1 =

n

2

= −
(

0− πa(r2)n/2

n/2

)
=

πarn

n/2

=
πr2

n/2
· arn−2 =

πr2

n/2
Vn−2(r) =

2πr2

n
Vn−2(r).
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This relationship lets us easily work out many more low-dimensional sphere volumes. We’ll use the
form Vn(r) = 2πr2

n Vn−2(r) for odd dimensions, and Vn(r) = πr2

n/2Vn−2(r) for even dimensions:

Dimension Volume
1 2r

3 2πr2

3 · 2r = 4
3πr3

5 2πr2

5 · 2πr2

3 · 2r = 8
15π2r5

7 2πr2

7 · 2πr2

5 · 2πr2

3 · 2r = 16
105π3r7

Dimension Volume
2 πr2

4 πr2

2 · πr2 = 1
2π2r4

6 πr2

3 · πr2

2 · πr2 = 1
6π3r6

8 πr2

4 · πr2

3 · πr2

2 · πr2 = 1
24π4r8

Now, we can write down the general formulas. If n is even, then

Vn(r) =
1

2 · 3 · 4 · · · (n/2)
πn/2rn =

1
(n/2)!

πn/2rn.

If n is odd, the calculation is somewhat harder:

Vn(r) =
2
1
· 2
3
· 2
5
· · · 2

n
π

n−1
2 rn

= 2
n+1

2
1

1 · 3 · 5 · · ·nπ
n−1

2 rn = 2
n+1

2
2 · 4 · 6 · · · (n− 1)

1 · 2 · 3 · 4 · 5 · 6 · · · (n− 1) · nπ
n−1

2 rn

= 2
n+1

2
(2 · 1) · (2 · 2) · (2 · 3) · · · (2 · n−1

2 )
n!

π
n−1

2 rn = 2
n+1

2
2

n−1
2 · 1 · 2 · 3 · · · n−1

2

n!
π

n−1
2 rn

=
2

n+1
2 + n−1

2 (n−1
2 )!

n!
π

n−1
2 rn.

Since n+1
2 + n−1

2 = n, the final answer is:

Vn(r) =





1
(n/2)!π

n/2
rn if n is even,

2
n
( n−1

2 )!

n! π(n−1)/2rn if n is odd.

(In reality, the above work is still a guess, not a mathematically rigorous proof. However, we do
now have a known formula for going up two dimensions at once. Using that and a technique called
“mathematical induction,” it’s not hard to turn this into a rigorous proof.)
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