Problem Set 1a

Due: September 6, 2005

- 1. Let W be a reflection group acting a real vector space V. Show that V admits an inner product $(i.e., a \text{ positive-definite symmetric bilinear form}) \langle, \rangle$ with respect to which W consists of orthogonal transformations.
- 2. Let k be an arbitrary field, and V a vector space over k. Let $s: V \to V$ be a linear transformation that fixes some hyperplane H pointwise.
 - (a) Suppose $s^2 = 1$. Under what conditions does it follow that s is a reflection? (*Hint:* Consider the characteristic of k.)
 - (b) More generally, s is called a *pseudoreflection* if, in addition to fixing H pointwise, s has a onedimensional eigenspace with eigenvalue a root of unity. If some power of s is the identity map on V, then under what conditions does it follow that s is a pseudoreflection?
- 3. Let V be a vector space. Recall that Humphreys' axioms for a root system $\Phi \subset V$ are:
 - (R1) $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$;
 - (R2) $s_{\alpha}\Phi = \Phi$.

Consider the following axiom

- (R2') For each $\alpha \in \Phi$, there exists an element $\alpha^{\vee} \in V^*$ such that $\alpha^{\vee}(\alpha) = 2$, and such that $p_{\alpha}(\Phi) = \Phi$, where $p_{\alpha} : V \to V$ is the map defined by $p(x) = x \alpha^{\vee}(x)\alpha$.
 - (a) Show that a set Φ satisfies (R1) and (R2) if and only if it satisfies (R1) and (R2'). Thus, (R1) and (R2') together provide an alternate definition of root system, one that does not require V to be endowed with an inner product beforehand.
 - (b) Assume now that Φ is a root system that spans V. Show that the elements $\alpha^{\vee} \in V^*$ are uniquely determined, and that the entire set $\Phi^{\vee} = \{\alpha^{\vee} \mid \alpha \in \Phi\}$ is itself a root system. What can you say about the reflection group associated to Φ^{\vee} ? What can you say about $(\Phi^{\vee})^{\vee}$?
- 4. (a) Prove that any reflection group generated by two reflections is isomorphic to a dihedral group.
 - (b) (*cf.* Humphreys, Exercise 1.3.1) Prove that any reflection group acting on a 2-dimensional vector space can be generated by two reflections.
- 5. (Humphreys, Exercise 1.3.2) Find simple systems for each of the groups S_n , B_n , D_n , and \mathcal{D}_m .