- K. Bremke and G. Malle,
*Reduced words and a length function for G(e,1,n)*, Indag. Math. (N.S.)**8**, 453–469. - K. Bremke and G. Malle,
*Root systems and length functions*, Geom. Dedicata**72**(1998), 83–97.

- Sections 6.8–6.9 of Humphreys' book; see also the references that he gives there.

- A. M. Cohen,
*Finite quaternionic reflection groups*, J. Algebra**64**(1980), 293–324.

- G. Lusztig,
*A class of irreducible representations of a Weyl group*, Nederl. Akad. Wetensch. Indag. Math.**41**(1979), 323–335.

- E. Brieskorn,
*Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe*, Invent. Math**12**(1971) 57–61.

- Section 4.5 of Geck–Pfeiffer, and other references given there.

- D.W. Koster's Ph.D. thesis, University of Wisconsin–Madison, 1976. (See me for a copy.)
- M. Broué, G. Malle, R. Rouquier,
*Complex reflection groups, braid groups, Hecke algebras*, J. Reine Agnew. Math**500**(1999), 127–190.

- G. Nebe,
*The root lattices of the complex reflection groups*, J. Group Theory**2**(1999), 15–38.

The last chapter of Humphreys' book is a brief summary of a number of interesting topics that one can explore starting from a basic knowledge of Coxeter groups. Any one of these would make a suitable topic for a talk. You would probably want get a bit deeper into the subject than what's in Humphreys' book, but he provides a good list of references for each topic.