Exam 2 Solutions
October 12, 2006

Total points: 100
Time limit: 80 minutes

No calculators, books, notes, or other aids are permitted. You must show your work and justify your steps to receive full credit.

1. Short answer:

(a) (4 points) What is the definition of critical point?

Solution: A point x where $f'(x)$ is either 0 or undefined.

(b) (4 points) Suppose $f(x)$ is concave up on the interval $(-2, \infty)$, and that $x = 3$ is a critical point. Which of the choices below to describes this critical point? Briefly explain your answer.

 relative minimum relative maximum neither can’t tell

Solution: Relative minimum. The fact that $f(x)$ is concave up on $(-2, \infty)$ means that $f''(x)$ is positive on $(-2, \infty)$. In particular, $f''(3) > 0$, so the Second Derivative Test says that $f(x)$ has a relative minimum at $x = 3$.

(c) (4 points each) Sketch an example of a graph with the property that:

(i) it is increasing and concave down

Solution:

(ii) $x = 0$ is an inflection point but not a critical point

Solution:

2. (6 points each) Find the derivatives of the following functions. (It is not necessary to simplify your answers.)

(a) $f(x) = \left(\frac{1 + x}{1 - x}\right)^4$

Solution:

$f'(x) = 4 \left(\frac{1 + x}{1 - x}\right)^3 \frac{d}{dx} \left(\frac{1 + x}{1 - x}\right)$

chain rule

$= 4 \left(\frac{1 + x}{1 - x}\right)^3 \left(\frac{1 - (1 + x)}{(1 - x)^2}\right)$

quotient rule

$= 4 \left(\frac{1 + x}{1 - x}\right)^3 \left(\frac{2}{(1 - x)^2}\right)$

$= \frac{8(1 + x)^3}{(1 - x)^5}$

(b) $g(t) = (t + 1)^{3/2}t^4$

Solution:
\[g(t) = (t + 1)^{3/2} \cdot 4t^3 + t^4 \cdot \frac{d}{dt}(t + 1)^{3/2} \quad \text{product rule} \]
\[= (t + 1)^{3/2} \cdot 4t^3 + \frac{3}{2}(t + 1)^{1/2} \cdot 1 \quad \text{chain rule} \]
\[= 4(t + 1)^{3/2}t^3 + \frac{3}{2}(t + 1)^{1/2}t^4 \]

3. (6 points each) In the following problems, find \(dy/dx \) by implicit differentiation.

(a) \(x^2 - y^2 = 8xy \)

Solution:
\[
2x - 2y \frac{dy}{dx} = 8x \frac{dy}{dx} + y \cdot 8 \quad \text{chain rule on } y^2; \text{ product rule on } 8xy
\]
\[-2y \frac{dy}{dx} - 8x \frac{dy}{dx} = 8y - 2x \]
\[-2y - 8x \frac{dy}{dx} = 8y - 2x \]
\[
\frac{dy}{dx} = \frac{8y - 2x}{2y - 8x} = \frac{2(4y - x)}{2(-y - 4x)}
\]
\[
\frac{dy}{dx} = \frac{4y - x}{-y - 4x}
\]

(b) \((x + y)^{2/3} = x^2 \)

Solution:
\[
\frac{2}{3}(x + y)^{-1/3} \cdot \left(1 + \frac{dy}{dx} \right) = 2x \quad \text{chain rule on left-hand side}
\]
\[
\frac{2}{3}(x + y)^{-1/3} + \frac{2}{3}(x + y)^{-1/3} \frac{dy}{dx} = 2x
\]
\[
\frac{2}{3}(x + y)^{-1/3} \frac{dy}{dx} = 2x - \frac{2}{3}(x + y)^{-1/3}
\]
\[
\frac{dy}{dx} = \frac{2x - \frac{2}{3}(x + y)^{-1/3}}{\frac{2}{3}(x + y)^{-1/3}} = \frac{2x - \frac{2}{3}(x + y)^{-1/3}}{\frac{2}{3}(x + y)^{1/3}} \cdot \frac{\frac{2}{3}(x + y)^{1/3}}{\frac{2}{3}(x + y)^{1/3}}
\]
\[
\frac{dy}{dx} = \frac{3x(x + y)^{1/3} - 1}{1} = 3x \sqrt[3]{x + y} - 1
\]

4. (10 points) Consider the function \(f(x) = x - 4 + 4/x \). Find the critical points of \(f(x) \). Then draw the sign chart for \(f'(x) \), and label each critical point on it with “min,” “max,” or “neither.”

Solution: First find the derivative: \(f(x) = x - 4 + 4x^{-1} \), so
\[
f'(x) = 1 - 4x^{-2} = 1 - 4/x^2.
\]
Critical points: \(f'(x) \) is undefined when \(x = 0 \), so \(x = 0 \) is a critical point. The other critical points are found by setting \(f'(x) = 0 \):
\[
1 - 4/x^2 = 0
\]
\[
1 = 4/x^2
\]
\[
x^2 = 4
\]
\[
x = \pm 2
\]
So the critical points are \(x = -2, 0, +2 \). Plug in some points:
\[
f'(-3) = 5/9 \quad f'(-1) = -3 \quad f'(1) = -3 \quad f'(3) = 5/9
\]
So the sign chart looks like this:

\[
\begin{array}{c|c|c|c|c}
 f'(x) & + & - & - & + \\
 -2 & 0 & 2 & \\
 \text{max} & \text{neither} & \text{min} & \\
\end{array}
\]

The First Derivative Test tells us that there is a relative maximum at \(x = -2 \), a relative minimum at \(x = 2 \), and no extremum at \(x = 0 \).

5. (10 points) Consider the function \(g(x) = x^5 - 5x^4 + 15x \).

(a) Find \(g'(x) \) and \(g''(x) \), and draw the sign chart for \(g''(x) \). Do not draw the sign chart for \(g'(x) \).

Solution: First and second derivatives:

\[
g'(x) = 5x^4 - 20x^3 + 15 \]
\[
g''(x) = 20x^3 - 60x^2
\]

There are no points where \(g''(x) \) is undefined. Setting \(g''(x) = 0 \), we find:

\[
20x^3 - 60x^2 = 0 \\
20x^2(x - 3) = 0 \\
x = 0, 3
\]

Plug in a few points: \(g''(-1) = -80 \), \(g''(1) = -40 \), \(g''(4) = 320 \). So the sign chart is:

\[
g''(x) \quad + \quad - \quad 0 \quad 3 \quad -
\]

(b) What are the inflection points of \(g(x) \)?

Solution: Only \(x = 3 \). (Note: \(x = 0 \) is not an inflection point because \(g''(x) \) does not change sign as it crosses \(x = 0 \).)

(c) On what intervals is \(g(x) \) concave up? Concave down?

Solution: Concave up on \((3, \infty)\). Concave down on \((-\infty, 0)\) and \((0, 3)\) (or on \((-\infty, 3)\)).

(d) The critical points of \(g(x) \) are at \(x = 1 \) and approximately \(x \approx 3.9514 \). Using the second derivative test, determine whether each of these is a relative minimum or a relative maximum. Warning: You will receive no credit if you answer this question using the first derivative test.

Solution: \(x = 1 \) is a relative maximum (because according to the sign chart, \(g''(1) < 0 \) and \(x \approx 3.9514 \) is a relative minimum (because \(g''(3.9514) > 0 \)).

6. (20 points) Find the maximum possible area of a rectangle whose perimeter is 36 cm.

(a) Sketch a picture, and label all the variables you will use.

Solution:

\[
x = \text{width of the rectangle} \\
y = \text{height of the rectangle} \\
A = \text{area of the rectangle}
\]

\[
\text{width} \quad | \quad \text{height} \\
\text{x} \quad | \quad y
\]

\[
\text{width} \quad | \quad \text{height} \\
\text{x} \quad | \quad y
\]
(b) Write down all the relationships between variables that you can find.

Solution:
\[A = xy \quad \text{(area)} \]
\[36 = 2x + 2y \quad \text{(perimeter)} \]

(c) Which variable do you have to maximize? Write that variable as a function of just one other variable.

Solution: Need to maximize \(A \). Solve for \(y \) in the perimeter equation:
\[
2x + 2y = 36 \\
2y = 36 - 2x \\
y = \frac{36 - 2x}{2} = 18 - x
\]
and plug this in to the area equation:
\[
A = xy = x(18 - x) \\
A = 18x - x^2
\]

(d) Finish solving the problem. Clearly indicate your answer to the original question.

Solution: Derivative:
\[
\frac{dA}{dx} = 18 - 2x.
\]
Critical points: There are no points where \(\frac{dA}{dx} \) is undefined. Setting \(\frac{dA}{dx} = 0 \), we have:
\[
18 - 2x = 0 \\
-2x = -18 \\
x = 9
\]
So \(x = 9 \) is the only critical point. To make sure this is a relative maximum, draw the sign chart:
\[
\frac{dA}{dx} \quad + \quad 9 \quad -
\]
So there is indeed a maximum at \(x = 9 \).

The value of \(A \) when \(x = 9 \) is
\[
A(9) = 18(9) - 9^2 = 162 - 81 = 81,
\]
so the maximum possible area is 81 cm\(^2\).

7. (20 points) A person is blowing air into a spherical balloon at a rate of 5 cm\(^3\)/s. How fast is the radius of the balloon increasing when its radius is 5 cm?

(a) Sketch a picture, and label all the variables you will use.

Solution:
\[
\begin{align*}
& r = \text{radius of the balloon} \\
& V = \text{volume of the balloon} \\
& t = \text{time}
\end{align*}
\]
(b) Write down all the relationships between variables that you can find.

Solution:

\[V = \frac{4}{3}\pi r^3 \quad \text{volume of a sphere} \]

\[\frac{dV}{dt} = 5 \text{ cm}^3/\text{s} \quad \text{given in the problem} \]

(c) What derivative do you have to find to answer the question?

Solution: \(\frac{dr}{dt} \)

(d) Finish solving the problem. Clearly indicate your answer to the original question.

Solution: Implicit differentiation:

\[V = \frac{4}{3}\pi r^3 \quad \text{volume of a sphere} \]

\[\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt} \quad \text{chain rule on right-hand side} \]

\[5 = 4\pi (5)^2 \cdot \frac{dr}{dt} \quad \text{use } \frac{dV}{dt} = 5 \text{ and } r = 5 \]

\[\frac{dr}{dt} = \frac{5}{4\pi \cdot 25} = \frac{1}{20\pi} \]

The radius is increasing at a rate of \(\frac{1}{20\pi} \text{ cm/s} \).