Basic Facts on Sheaves

Definition 1. A sheaf of abelian groups \mathcal{F} on a topological space X is the following collection of data:

- for each open set $U \subset X$, an abelian group $\mathcal{F}(U)$, with $\mathcal{F}(\emptyset) = 0$
- if $U \subset V$, a restriction map $\rho_{VU} : \mathcal{F}(V) \to \mathcal{F}(U)$, with $\rho_{UU} = \mathrm{id}$

such that

- (1) (restriction) if $U \subset V \subset W$, then $\rho_{WU} = \rho_{VU} \circ \rho_{WV}$
- (2) (gluing) if $\{V_i\}$ is an open covering of U, and we have $s_i \in \mathcal{F}(V_i)$ such that for all $i, j, \rho_{V_i, V_i \cap V_j}(s_i) = \rho_{V_i, V_i \cap V_j}(s_j)$, then there exists a unique $s \in \mathcal{F}(U)$ such that $\rho_{U, V_i}(s) = s_i$ for all i.

If one omits the gluing condition from the above definition, one has a **presheaf of abelian groups**. Elements of $\mathcal{F}(U)$ are called **sections** of \mathcal{F} over U, and elements of $\mathcal{F}(X)$ are called **global sections**.

One can also define (pre)sheaves of *R*-modules, vector spaces, *etc.*

Notation 2. $\Gamma(U, \mathcal{F}) := \mathcal{F}(U)$. $s|_V := \rho_{VU}(s)$.

Lemma 3. Let \mathcal{F} be a sheaf. If $\{V_i\}$ is an open cover of U, and $s, t \in \mathcal{F}(U)$ are sections such that $s|_{V_i} = t|_{V_i}$ for all i, then s = t. In particular, if $s|_{V_i} = 0$ for all i, then s = 0.

Definition 4. Let \mathcal{F} be a presheaf on X. The stalk of \mathcal{F} at a point $x \in X$, denoted \mathcal{F}_x , is the group whose elements are equivalence classes of pairs

(U, s) where U is a neighborhood of x and $s \in \mathcal{F}(U)$,

and the equivalence relation is

 $(U,s) \sim (V,t)$ if there is an open set $W \subset U \cap V$ with $x \in W$ and $s|_W = t|_W$

For any neighborhood U of x, there is a natural map $\mathcal{F}(U) \to \mathcal{F}_x$ sending a section $s \in \mathcal{F}(U)$ to the equivalence class of the pair (U, s). That equivalence class is denoted s_x and is called the **germ** of s at x.

Lemma 5. A section is determined by its germs. That is, if $s, t \in \mathcal{F}(U)$, and if $s_x = t_x$ for all $x \in U$, then s = t.

Definition 6. Let \mathcal{F} and \mathcal{G} be presheaves. A morphism $f : \mathcal{F} \to \mathcal{G}$ is a collection of abelian group homomorphisms $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$, where U ranges over all open sets of X, that are compatible with restriction. That is, the following diagram must commute whenever $V \subset U$:

$$\begin{array}{c|c} \mathcal{F}(U) \xrightarrow{f_U} \mathcal{G}(U) \\ & & \downarrow^{\rho_{UV}^{\mathcal{F}}} \\ & & \downarrow^{\rho_{UV}^{\mathcal{G}}} \\ \mathcal{F}(V) \xrightarrow{f_V} \mathcal{G}(V) \end{array}$$

A morphism $f : \mathcal{F} \to \mathcal{G}$ is an **isomorphism** if there is another morphism $g : \mathcal{G} \to \mathcal{F}$ such that $f \circ g = \mathrm{id}_{\mathcal{G}}$ and $g \circ f = \mathrm{id}_{\mathcal{F}}$.

It is easy to check that $f : \mathcal{F} \to \mathcal{G}$ is an isomorphism if and only if $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for all open sets $U \subset X$.

Definition 7. Let $f : \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves, and let $x \in X$. The **induced homomorphism** of stalks at x is the map $f_x : \mathcal{F}_x \to \mathcal{G}_x$ given by $f_x([(U,s)]) = [(U, f_U(s))]$. (Here, the notation [(V,t)] for an element of a stalk denotes the equivalence class of the pair (V,t).)

One must check that f_x is well-defined; the proof uses the fact that the f_U are compatible with restriction.

Definition 8. A sub(pre)sheaf of \mathcal{F} is a (pre)sheaf \mathcal{G} such that $\mathcal{G}(U) \subset \mathcal{F}(U)$ for every open set U, and whose restriction maps are the restrictions of the restriction maps of \mathcal{F} . That is, in the diagram

$$\begin{array}{c|c} \mathcal{G}(U) & \longrightarrow \mathcal{F}(U) \\ \rho^{\mathcal{G}}_{UV} & & & & & \\ \rho^{\mathcal{G}}_{UV} & & & & & \\ \mathcal{G}(V) & \longrightarrow \mathcal{F}(V) \end{array}$$

we must have $\rho_{UV}^{\mathcal{G}} = \rho_{UV}^{\mathcal{F}}|_{\mathcal{G}(U)}$.

Definition 9. Let \mathcal{F} be a presheaf. The **sheafification** of \mathcal{F} is the sheaf \mathcal{F}^+ defined by

$$\mathcal{F}^+(U) = \left\{ s: U \to \coprod_{x \in U} \mathcal{F}_x \middle| \begin{array}{c} \text{for all } x \in U, \ s(x) \in \mathcal{F}_x, \text{ and there is a neighborhood } V \subset U \\ \text{of } x \text{ and a section } t \in \mathcal{F}(V) \text{ such that for all } y \in V, \ s(y) = t_y \right\}$$

(Check that \mathcal{F}^+ really is a sheaf.)

When \mathcal{F} happens to be a subpresheaf of a sheaf, there is a convenient alternate description of sheafification.

Lemma 10. Suppose \mathcal{F} is a subpresheaf of \mathcal{G} , and assume that \mathcal{G} is a sheaf. Define a new sheaf $\mathcal{F}' \subset \mathcal{G}$ by

 $\mathcal{F}'(U) = \{s \in \mathcal{G}(U) \mid \text{there is an open cover } \{V_i\} \text{ of } U \text{ such that } s|_{V_i} \in \mathcal{F}(U) \text{ for all } i\}.$

Then $\mathcal{F}' \simeq \mathcal{F}^+$.

Corollary 11. If \mathcal{F} is a sheaf, then $\mathcal{F} \simeq \mathcal{F}^+$.

Lemma 12. Let \mathcal{F} be a presheaf. For all $x \in X$, $\mathcal{F}_x \simeq \mathcal{F}_x^+$.

For any presheaf \mathcal{F} , there is a canonical morphism $\iota : \mathcal{F} \to \mathcal{F}^+$ defined as follows: given $s \in \mathcal{F}(U)$, we let $\iota_U(s) \in \mathcal{F}^+(U)$ be the function $U \to \coprod \mathcal{F}_x$ given by $\iota_U(s)(x) = s_x$.

Lemma 13 (Universal property of sheafification). Let \mathcal{F} be a presheaf and \mathcal{G} a sheaf. Given a morphism $f : \mathcal{F} \to \mathcal{G}$, there is a unique morphism $f^+ : \mathcal{F}^+ \to \mathcal{G}$ such that $f = f^+ \circ \iota$.

In other words, this lemma asserts the existence of a morphism f^+ making the following diagram commute:

$$\mathcal{F} \xrightarrow{\iota \qquad \mathcal{F}^+ \qquad f^+} \mathcal{G}$$

Definition 14. Let $f : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. The **kernel** of f is the sheaf ker f given by $(\ker f)(U) = \ker f_U$. This is a subsheaf of \mathcal{F} .

(The assertion that ker f is a sheaf requires proof.)

Definition 15. Let $f : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. The **presheaf-image** of f is the presheaf psim f given by $(psim f)(U) = im f_U$. This is a subpresheaf of \mathcal{G} , but it is not in general a sheaf.

The **image** of f is the sheafification of its presheaf-image: im $f = (psim f)^+$. By Lemma 10, im f can be identified with a subsheaf of \mathcal{G} .

Definition 16. A morphism of sheaves $f : \mathcal{F} \to \mathcal{G}$ is **injective** if ker f = 0, and **surjective** if im $f = \mathcal{G}$.

Lemma 17. A morphism of sheaves $f : \mathcal{F} \to \mathcal{G}$ is injective if and only if $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective for every open set U.

WARNING: The analogue of the preceding lemma for surjective morphisms is false.

Lemma 18. A morphism of sheaves $f : \mathcal{F} \to \mathcal{G}$ is injective (resp. surjective, an isomorphism) if and only if $f_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective (resp. surjective, an isomorphism) for all $x \in X$.