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Convention. Henceforth, all sheaves will be sheaves of complex vector spaces. All topological spaces will
be locally compact, Hausdorff, second-countable, locally path-connected, and semilocally simply connected.
Unless otherwise specified, they will also be path-connected.

Remark 1. If F and G are sheaves of complex vector spaces, objects like Hom(F ,G) and F ⊗ G depend
on whether one is working in the category of sheaves of abelian groups, or in the category of sheaves of
vector spaces. Indeed, the same phenomenon is already visible with ordinary Hom and ⊗: in the category
of complex vector spaces, we have C ⊗ C ' C, while in the category of real vector spaces, C ⊗ C ' R4. In
the category of abelian groups, C ⊗ C is an uncountable-rank free Z-module for which we cannot give an
explicit basis.
Henceforth, all Hom-groups, sheaf Hom’s, and tensor products are to be computed in the category of sheaves
of complex vector spaces.

Definition 2. A sheaf F on X is locally constant, or F is a local system, if for all x ∈ X, there is a
neighborhood U containing x such that F|U is a constant sheaf.

Example 3. A constant sheaf is locally constant.

Example 4. The square-root sheaf Q on C r {0} is locally constant, but not constant.

Example 5. Let F be the sheaf of continuous functions on X = C. This sheaf is not locally constant. In
general, if U is a connected neighborhood of x, then over any smaller connected neighborhood V ⊂ U there
will be sections (continuous functions) that are not the restriction of any section over U . This situation does
not occur in constant sheaves, so F|U is not a constant sheaf for any open set U .

Definition 6. A sheaf F on X is constructible if there is a decomposition X =
⊔n

i=1Xi of X into a
disjoint union of finitely many locally closed subsets Xi such that F|Xi is locally constant. (A set is locally
closed if it is the intersection of an open set and a closed set.)

Note, in particular, that all open sets and all closed sets are locally closed.
Typically, the required decomposition of X will either be obvious or fixed in advance. Proving that a given
sheaf is constructible usually consists only of showing that the restrictions F|Xi

are locally constant, and
not of finding the decomposition of X.

Theorem 7. There is a bijection{
local systems on X
up to isomorphism

}
∼←→

{
representations of π1(X,x0)

up to isomorphism .

}
In fact, more is true: there is an equivalence of categories between the two sides of this picture.
A subset K ⊂ X is called good (for F if it is connected, and there is a connected open set V containing K
such that F|V is a constant sheaf. Note that if K is good, any connected subset K ′ ⊂ K is also good.
If γ, γ′ : [0, 1]→ X are two paths in X, we write γ ∼ γ′ to indicate that they are homotopic.

Lemma 7.1. Let x1, . . . , xn be points in a good set K. There are natural isomorphisms of stalks Fxi

∼→ Fxj

for all i and j. These isomorphisms are compatible with each other: for any i, j, k, the composition Fxi

∼→
Fxj

∼→ Fxk
coincides with Fxi

∼→ Fck
.

Proof. Choose a good open set V containing K. Since F|V is constant, the natural maps F(V ) → Fxi

are all isomorphisms. Composing one of these with the inverse of another gives the desired isomorphisms:
Fxi

∼← F(V ) ∼→ Fxj . The compatibility is obvious. �



Lemma 7.2. If γ : [0, 1] → X (resp. H : [0, 1]2 → X) is a continuous map, there exist numbers a0 = 0 <
a1 < · · · < an = 1 (resp. and b0 = 0 < b1 < · · · < bm = 1) such that for all i, γ([ai, ai+1]) (resp. for all i and
j, H([ai, ai+1]× [bj , bj+1])) is good.

Proof. For every point t ∈ [0, 1] (resp. t ∈ [0, 1]2), there is a good open neighborhood of γ(t) (resp. H(t)),
so by continuity, there is an open neighborhood V of t such that γ(V ) (resp. H(V )) is good. Inside V , find
an interval [a, a′] (resp. box [a, a′]× [b, b′]) containing t. The interiors of all these intervals (resp. boxes), as
t ranges over all points of [0, 1] (resp. [0, 1]2), form an open cover. By compactness, we can select finitely
of them that still form an open cover. From the remaining intervals (resp. boxes), write all a’s and a′’s in
order as a0 < a1 < · · · < an (resp. and write all the b’s and b′’s as b0 < b1 < · · · < bm). Each interval
[ai, ai+1] (resp. box [ai, ai+1]× [bj , bj+1]) is contained in one of the original open sets (called “V ” above), so
γ([ai, ai+1]) (resp. H([ai, ai+1]× [bj , bj+1])) is good. �

Proof of Theorem 7. The proof proceeds in five steps.
Step A. Given a path γ : [0, 1]→ X, define an invertible linear transformation ρ(γ) : Fγ(0)

∼→ Fγ(1). Invoke
Lemma 7.2 to get a sequence of points a0 = 0 < a1 < · · · < an = 1. Since γ([ai, ai+1]) is good for each i, by
invoking Lemma 7.1, we obtain a number of isomorphisms as follows:

Fγ(0)
∼→ Fγ(a1)

∼→ Fγ(a2)
∼→ · · · ∼→ Fγ(1).

We would like to define ρ(γ) to simply be the composition of all of these, but at first glance it is not clear that
that would be well-defined: it appears to depend on the ai’s that come out of the invocation of Lemma 7.2.
To deal with this problem, note first that if we add a new point anew to our list, say between ai and ai+1, then
γ([ai, anew]) and γ([anew, ai+1]) are good, so we can repeat the above construction. But the total composition
Fγ(0)

∼→ Fγ(1) will remain unchanged, because the triangle

Fγ(ai)
∼ //

∼ &&MMM
MM

Fγ(ai+1)

Fγ(anew)

∼
77ppppp

commutes by Lemma 7.1. Indeed, by induction adding finitely many points to the ai’s does not change the
total composition Fγ(0)

∼→ Fγ(1).
In general, to show that ρ(γ) defined with respect to a0, . . . , an coincides with the map defined by another
set of points, say a′0, . . . , a

′
n′ , we simply note that both coincide with the map defined with respect to the

set of all ai’s and a′i’s. So ρ(γ) is well-defined. �

Step B. If γ ∼ γ′, then ρ(γ) = ρ(γ′). Let H : [0, 1]2 → X be a homotopy between γ and γ′. That is,
H(t, 0) = γ(t) and H(t, 1) = γ′(t). Let a0 < a1 < · · · < an and b0 < b1 < · · · < bm be as given by
Lemma 7.2. Let γj : [0, 1]→ X be the path γj(t) = H(t, bj). (In particular, γ0 = γ and γm = γ′.) To prove
that ρ(γ) = ρ(γ′), it clearly suffices to prove ρ(γj) = ρ(γj+1) for all j.
Consider the diagram

FH(0,bj+1)
∼ // FH(a1,bj+1)OO

o
��

∼ // FH(a2,bj+1)OO

o
��

∼ // ∼// FH(1,bj+1)

FH(0,bj)
∼ // FH(a1,bj)

∼ // FH(a2,bj)
∼ // ∼ // FH(1,bj)

By Lemma 7.2, every small square in this diagram commutes, because H([ai, ai+1]× [bj , bj+1]) is good. Since
ρ(γj) is the composition of all the maps along the bottom of this diagram, and ρ(γ′) is the composition of
all maps along the top, we see that ρ(γ) = ρ(γ′). �

Corollary. There is a well-defined map ρ : π1(X,x0) → GL(Fx0). This follows immediately from Steps A
and B.
Step C. Given a representation τ : π1(X,x0) → GL(E), construct a local system G on X. For each point
x ∈ X, let us choose, once and for all, a path αx : [0, 1] → X that joins x0 to x. (That is, αx(0) = x0 and
αx(1) = x.) In particular, let us take αx0 to be the constant path at x0.
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Now, we define a sheaf G on X by:

G(U) =

{
functions
k : U → E

∣∣∣∣∣ for any path γ : [0, 1]→ U , we have
k(γ(1)) = [α−1

γ(1) ∗ γ ∗ αγ(0)] · k(γ(0))

}
Here, “∗” indicates composition of paths. Note that α−1

γ(1) ∗ γ ∗ αγ(0) is a loop based at x0, so its homotopy
class [α−1

γ(1) ∗ γ ∗ αγ(0)] is an element of π1(X,x0). Via τ , this element acts on the vector k(γ(0)) ∈ E.
The verification that G is sheaf is routine, and we omit it. It does, however, remain to show that G is
locally constant. Here we require the fact that X is semilocally simply connected. That is, every point has
a neighborhood V with the property that every loop in V is null-homotopic in X.
Given such a V , we will now show that G(V ) ' E. Choose a point x ∈ V , and define a map φ : G(V )→ E
by φ(k) = k(x). It is easy to check that φ is injective. Indeed, a section k ∈ G(V ) is determined by the
vector k(x) ∈ E as follows: for any y ∈ V , we have k(y) = [α−1

y ∗ γ ∗ αx] · k(x), where γ is any path joining
x to y. To show that φ is surjective, given e ∈ E, we define a function k ∈ G(V ) by

k(y) = [α−1
y ∗ γ ∗ αx] · e where γ is a path joining x to y.

(In particular, if y = x, we take γ to be the constant path at x, so that φ(k) = k(x) is indeed e.) But now
there is a well-definedness issue arising from the choice of γ. For a given y ∈ V , suppose γ and γ′ are two
different paths joining x to y. Then γ−1 ∗ γ′ is a loop in V , which is, by assumption, null-homotopic in X.
It follows from this that γ ∼ γ′ in X, and therefore that [α−1

y ∗ γ ∗ αx] = [α−1
y ∗ γ′ ∗ α(x)] ∈ π1(X,x0).

Thus, k(y) is independent of the choice of γ, and k is well-defined. We conclude that φ : G(V ) ∼→ E is an
isomorphism.
Now, the same argument can be repeated for any connected open set V ′ ⊂ V , so G(V ′) ' E for such sets as
well. It follows then that in fact G|V ' EV . Since a neighborhood V of this type can be found around every
point in X, we conclude that G is locally constant. �

At this point, we have a construction F 7→ ρ assigning a representation to any local system, and another,
τ 7→ G, assigning a local system to any representation. It remains to show that these two assignments are
inverses of one another.
Step D. Given F and ρ as in Steps A–B, take τ = ρ and construct G as in Step C. Then F ' G. Note that
the vector space E of Step C is now identified with Fx0 . We will actually work with the sheafification F+

of F rather than F itself. (Of course, since F is already a sheaf, the two are isomorphic.) First, we define
a morphism φ : F+ → G. Let U be a connected open set such that F+|U is a constant sheaf. We define
φU : F+(U) → G(U) as follows: given s ∈ F+(U) (recall that s is a function U →

∐
x∈U Fx), we define

φU (s) ∈ G(U) to be the function

φU (s) : U → Fx0 , φU (s)(x) = ρ(α−1
x ) · s(x).

(This makes sense: s(x) ∈ Fx, and α−1
x is a path from x to x0, so ρ(α−1

x ) is a linear transformation
Fx

∼→ Fx0 .) We need to check that φU (s) is a valid section of G: given a path γ : [0, 1] → U , note first
that γ([0, 1]) is good, so the linear transformation ρ(γ) constructed in Step A coincides with the canonical
isomorphism Fγ(0)

∼→ Fγ(1) of Lemma 7.1. The latter is defined by taking germs of a given section, so we
see that ρ(γ) · s(γ(0)) = s(γ(1)). Then,

φU (s)(γ(1)) = ρ(α−1
γ(1)) · s(γ(1)) = ρ(α−1

γ(1))ρ(γ) · s(γ(0))

= ρ(α−1
γ(1) ∗ γ ∗ αγ(0))ρ(α−1

γ(0)) · s(γ(0)) = ρ([α−1
γ(1) ∗ γ ∗ αγ(0)]) · φU (s)(γ(0)).

So φU (s) is indeed a valid section of G(U).
Although we have only defined φU for certain open sets U , those sets suffice—φU is determined on other
open sets by gluing. The verification of this is left as an exercise.
Next, we define a morphism ψ : G → F+. This time, let V be an open set in which all loops are null-
homotopic in X (again, we are using the semilocally-simply-connectedness of X). Given k ∈ G(V ) (a certain
function k : U → Fx0), define ψV (k) ∈ F+(V ) by

ψV (k) : U →
∐
x∈V

Fx, ψV (k)(x) = ρ(αx) · k(x).
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This time, we must check the local condition for ψV (k) to be a valid section of F+(V ). Let U ⊂ V be a
connected neighborhood of x such that F|U is constant, and let s ∈ F(U) be such that sx = ψV (k)(x). We
will show that for all y ∈ U , sy = ψV (k)(y). As argued above, sy = ρ(γ) · sx, where γ is any path in U
joining x to y. Recall also that k satsifies k(y) = ρ(α−1

y ∗ γ ∗ αx) · k(x). Now,

ψV (k)(y) = ρ(αy) · k(y) = ρ(αy) · ρ(α−1
y ∗ γ ∗ αx) · k(x)

= ρ(γ) · ρ(αx) · k(x) = ρ(γ) · sx = sy.

As before, it suffices to define ψ on a certain collection of open sets.
It remains to check that ψ ◦ φ and φ ◦ ψ are the identity morphisms of F+ and G, respectively. This is
straightforward from the formulas. �

Step E. Given τ and G as in Step C, take F = G and construct ρ as in Steps A–B. Then ρ = τ . Note first
that all stalks of G are copies of E, and the germ of a section k at x is simply its value k(x). Let U be an
open set such that G|U is a constant sheaf, and let γ : [0, 1] → U be a path in U . Following the proof of
Lemma 7.1, we construct ρ(γ) : E → E as follows: given e ∈ E, take a function k ∈ G(U) such that k(x) = e;
then ρ(γ) · e = k(y). We have k(y) = τ([α−1

y ∗ γ ∗ αx]) · k(x), so ρ(γ) = τ([α−1
y ∗ γ ∗ αx]).

Now, if γ is a loop based at x0, let us follow the construction of ρ(γ) in Step A. Take a0 = 0 < a1 < · · · <
an = 1 such that γ([ai, ai+1]) is good. The action of each restricted path γ|[ai,ai+1] is constructed as in the
previous paragraph, and ρ(γ) is the composition of all of these. Thus:

ρ(γ) = τ([α−1
x0
∗ γ|[an−1,1] ∗ αγ(an−1)]) · τ([α

−1
γ(an−1)

∗ γ|[an−2,an−1] ∗ αγ(an−2)]) · · · τ([α
−1
γ(a1)

∗ γ|[0,a1] ∗ αx0 ])

= τ([γ|[an−1,1] ∗ γ|[an−2,an−1] ∗ · · · ∗ γ[0,a1]]) = τ([γ]).

Here we have used the fact that αx0 is the constant path. This completes the proof of the theorem. �
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