Applications of Homological Algebra Introduction to Perverse Sheaves
Spring 2007 P. Achar
Derived Functors in Categories of Sheaves
March 8, 2007

In the philosophy expounded by Grothendieck, there are six important operations on sheaves, occuring in
three adjoint pairs:

(&, RHom), (fLRf.), (Rfi, f).
All other operations can be built out of these. (For example, R is the same as Ra., where a : X — {pt} is
the constant map to a point, and R Hom = RI'oc R'Hom.) In this set of notes, we will review the definitions
of all of these except f', list adapted classes, and collect various composition and adjointness theorems.

Convention. All statements below are correct for sheaves of abelian groups. However, some of them contain
conditions that become superfluous or trivial in the category of sheaves of vector spaces. Specifically, all
sheaves of vector spaces are flat, so ® is already an exact functor. Nevertheless, we will use the usual notation
®% for the functor induced by ® on the derived category.

Theorem 1. The category Shy of sheaves on X has enough injectives.

As a consequence, we can form the derived functor of all left-exact functors on sheaves.
Refer to the previous set of notes for the definitions Hom and ®. Analogous definitions can be made for
Hom and ® in the category of sheaves on a space X. Then, we define

RHom(F*,G%) = Hom(F*,ZI*) where Z° is an injective resolution of G°,

F* é G*=F'P* where P* is a flat resolution of G°®.

(Because all sheaves of vector spaces are flat, one can always just take P* = G*.)

Given a continuous map f : X — Y, the push-forward functor f, is left-exact, so we can form its derived
functor Rf.. The pullback functor f~' is exact and so automatically gives rise to a functor f~! on the
derived category.

We need to a bit of preparation to define f;.

Definition 2. Let F be a sheaf on X, let s € F(U). The support of s is defined to be
supps = {x € U | s, # 0}.

This is automatically a closed subset of U.

Definition 3. A continuous map f : X — Y is proper if, for every compact set K C Y, the preimage
f71(K) C X is compact.

Definition 4. Let f : X — Y be a continuous map, and let F be a sheaf on X. The proper push-forward
of F, denoted fiF, is the subsheaf of f,F defined by

(hF)U) ={s € fHU) | flsupps : supps — U is proper}.

Note that the restriction of a proper map to a closed subset of its domain is always proper. If f is a proper
map, then the functors fi and f. coincide, because f|supp s is always proper. In particular, if f is an inclusion
of a closed subset, proper push-forward and ordinary push-forward coincide.

If f is an inclusion of an open subset, fi coincides with the “extension by zero” functor defined earlier.

Definition 5. A sheaf F on X is flabby (or flasque) if the restriction maps F(X) — F(U) are surjective
for all U in X.

Definition 6. F is soft if for every compact set K C X, the natural map I'(F) — I'(F|k), or, equivalently,
the natural map
F(X)— l@ FU),
UDK
is surjective.

Remark 7. Some sources use the term “c-soft” for sheaves satisfying the above definition, and use the term
“soft” for a related notion in which “compact” is replaced by “closed.” However, on locally compact, second
countable Hausdorff spaces, the two notions coincide.

Proposition 8. Fvery injective sheaf is flabby. FEvery flabby sheaf is soft.

Theorem 9. The various functors on sheaves are left-exact, right-exact, or exact as shown in the table
below. For each functor, the classes of sheaves listed in the third column are adapted.

Note that this theorem is not asserting that the largest class listed for a given functor is in fact the largest
adapted class for that functor.

Functor Fzxactness Adapted classes Derwed functor Classical derived functors

r left injective, flabby RT Hi(X,-)
I« left injective, flabby Rf, Rif,

Hom left injective RHom Ext’

Hom left injective RHom Eat’
h left injective, flabby, soft Rfi R f,

ft exact — ft

® right flat ®* Tor;

Once again, recall that for sheaves of vector spaces, ® is exact, and all sheaves are flat. Also, the classical
derived functor Tor; (as well as the functor Tor; for abelian groups) is usually defined homologically: it is
defined in terms of a resolution whose differentials decrease degree. By convention, all our complexes have
differentials that raise degree, so the classical 7or; is obtained from our ®* by:

Tori(F,G) = H(F&G).

Since the category Ghy has enough injectives, no other adapted classes would have been needed if all we
wanted to do was define the derived functors of the various left-exact functors. However, we also want to be
able to understand compositions of derived functors. The following fact tells us how to do this.

Proposition 10. Let F: A — B and G : B — C be two left-exact functors. If there is an adapted class R
for F' and an adapted class S for G such that F(R) C S, then R(Go F) = RG o RF.

Not every left-exact functor takes injective objects to injective objects, so in order to apply the above
proposition, we usually need to have some additional adapted classes at hand. This is where flabby and soft
sheaves are useful.

Proposition 11. The functors f., fi, and Hom act on injective, flabby, and soft sheaves as shown here:

f« (injective) = injective Hom(anything, injective) = flabby
f« (flabby) = flabby Hom(flat, injective) = injective
fi (soft) = soft

The following theorem on compositions is now immediate:

Theorem 12. If f: X — Y and g:Y — Z are continuous maps, then

Rf.oRg. = R(fog)«
Rfio Rgi = R(f o g)

If F* and G* are complexes of sheaves on X, then
RT'(RHom(F*,G*)) = RHom(F*,G*).

Finally, we obtain two of the three important adjointness theorems by using the above facts on compositions
of derived functors. In both cases, the proof consists of reducing to the corresponding theorems in the
nonderived setting.

Theorem 13. If F*,G* € D~ (6hy) and H* € DT (Shy), then we have:
Hom(F*® @ G*, H®*) ~ Hom(F*, RHom(G*, H*)),
RHom(F* @" G*,H*) ~ RHom(F*, RHom(G*, H*)),
RHom(F* ®" G*, H*) ~ RHom(F*, RHom(G*, H®)).
Theorem 14. If f: X — Y is a continuous map, F* € D~ (Sbhy), and G* € D (Shy), then we have:
Hom(f 'F*,G*) ~ Hom(F*, Rf.G*)
RHom(f 'F*,G*) ~ RHom(F*, Rf.G*)
Rf.RHom(f 'F*,G*) ~ RHom(F*,Rf.G*)

