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Convention. We now add an assumption to our standing list of assumptions on topological spaces. For
each topological space X, we assume there is a number r such that for any exact sequence

F0 → · · · → Fr → 0

of sheaves on X, if F0, . . . ,Fr−1 are all soft, then so is Fr. (This assumption is true for manifolds and for
closed subsets of manifolds.)
We also add a hypothesis on sheaves. From now on, all sheaves will be assumed to be sheaves of finite-
dimensional vector spaces, and ShX will denote the category of such sheaves.

The main result in this set of notes is the following.

Theorem 1. Let f : X → Y be a continuous map. There is a functor f ! : D+(ShY ) → D+(ShX), unique
up to isomorphism, that is right-adjoint to Rf!:

Hom(Rf!F•,G•) ' HomF•, f !G•).

The proof relies on the following sequence of lemmas.

Lemma 2. Any sheaf F on X has a soft resolution of length at most r.

Lemma 3. For any sheaf F on X, there exists a sheaf P and a surjective morphism P → F where P is
of the form P =

∏
i CVi

. Here {Vi} is some collection of open sets, and CVi
is regarded as a sheaf on X by

extension by zero.

(The proof of the preceding lemma is close to a general proof of the existence of flat resolutions in the
category of sheaves of abelian groups.)

Lemma 4. If K is a flat, soft sheaf on X, then for any sheaf F on X, F ⊗K is soft.

Corollary 5. The functor F 7→ f!(F ⊗K) is exact.

Now, if K is a sheaf on X and G is a sheaf on Y , let H(K,G) be the presheaf given by

H(K,G)(V ) = Hom(f!(j!(K|V )),G) where j : V ↪→ X is the inclusion map.

Lemma 6. If K is flat and soft, and G is injective, then

(1) H(K,G) is a sheaf.
(2) Hom(f!(F ⊗K),G) ' Hom(F ,H(K,G)).
(3) H(K,G) is injective.

The last step is to actually define f !. Choose a resolution K• of CX by flat, soft modules. (If we had been
working in the setting of sheaves of abelian groups, the “flat” part of the preceding sentence would require
additional work, but for sheaves of vector spaces, it is automatic.) Let G• ∈ D+(ShX). Assume that G• is a
complex of injective sheaves (i.e., replace it by an injective resolution if necessary. Define the complex f !G•
by

(f !G•)i =
⊕

k−j=i

H(Kj ,Gk),

with differentials defined in the same way as for Hom. Once the theorem is proved, we also know that f !G•
is independent of the choice of K• by the following lemma.

Lemma 7 (Uniqueness of adjoints). If (F,G) and (F,H) are both adjoint pairs of functors, then G ' H.

As usual, we also have derived and sheaf-theoretic versions of the adjointness theorem. Note that these
cannot be proved by reducing to the nonderived case (as was done for the adjoint pairs (⊗L, RHom) and
(f−1, Rf∗)), because there is no nonderived version of f ! in general.



Proposition 8. Let f : X → Y be a continuous map. For any F• ∈ Db(ShX) and G• ∈ D+(ShY ), we
have:

R Hom(Rf!F•,G•) ' R HomF•, f !G•),

RHom(Rf!F•,G•) ' Rf∗RHom F•, f !G•).

Proposition 9. f !RHom(F•,G•) ' RHom(f−1F•, f !G•).

Definition 10. Let a : X → {pt} be the constant map from X to a one-point space. The dualizing
complex on X is the complex ωX = a!C.

Definition 11. Let F• ∈ D−(ShX). The Verdier dual of F• is the complex DF• = RHom(F , ωX).

Proposition 12. f !DF• ' Df−1F•.

Proposition 13. DDF• ' F•.

(The preceding proposition is not true if one works with sheaves of possibly infinite dimension, essentially
because taking the vector space dual twice gives the original vector space only if the original vector space is
finite-dimensional.)

Corollary 14. f−1DF• ' Df !F•.

Proposition 15. We have:

RHom(F•, DG•) ' RHom(G•, DF•) Rf!DF• ' DRf∗F•

RHom(F•, DG•) ' D(F• L

⊗ G•) Rf∗DF• ' DRf!F•

The following theorem is an easy consequence of the adjointness of Rf! and f ! in the special case where
f : X → {pt} is the map to a point.

Theorem 16 (Verdier Duality). H−i
c (X,F•)∗ ' Hi(X, DF•).

Classical Poincaré duality can be recovered from this with the aid of the following fact.

Proposition 17. Let X be a smooth, oriented n-dimensional manifold. Then ωX ' CX [n].

It follows immediately from this that on a smooth, oriented n-dimensional manifold, we have DC ' C[n].
Then the Verdier duality theorem above becomes the following.

Theorem 18 (Poincaré Duality). Hn−i
c (X, C)∗ ' Hi(X, C).

Historically, of course, Poincaré duality came long before Verdier duality, and Verdier duality can be seen as
a generalization of Poincaré duality.
Indeed, Verdier duality holds in great generality, whereas Poincaré duality, a much more specific statement,
fails for most spaces that are not manifolds. For most spaces, and most complexes of sheaves, the complexes
F• and DF• that appear in Verdier duality are different. What makes Poincaré duality work for manifolds
is the fact that the constant sheaf is close to self-dual. (Its dual is just a shift of itself.)
If we could find self-dual complexes of sheaves on other spaces, then we could achieve a sort of intermediate
generalization of Poincaré duality: a duality theorem that is closer in spirit to the original Poincaré duality,
but yet that holds on many spaces that are not manifolds.
The search for such self-dual complexes of sheaves is one of the principal motivations for the development of
the theory of perverse sheaves.
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