Problem Set 12

April 26, 2007

In all of the following problems, X is a stratified space with stratification S, and X has a unique open stratum U. All perverse sheaves are with respect to the middle perversity.

- 1. Let $f: Y \to X$ be a semismall resolution. Show that $Rf_*\mathbb{C}$ is a perverse sheaf.
- 2. Let $f: Y \to X$ be a small resolution. Show that $Rf_*\mathbb{C} \simeq \mathrm{IC}(X,\mathbb{C})$.
- 3. Suppose X has exactly two strata, U and Z (so of course U is open and Z is closed). Suppose p(U) > p(Z) (in particular, this is not a Goresky-MacPherson perversity). Show that all perverse sheaves are of the form $j_! \mathcal{E}[p(U)] \oplus i_* \mathcal{F}[p(Z)]$, where \mathcal{E} and \mathcal{F} are local systems on U and Z, respectively, and $j: U \hookrightarrow X$ and $i: Z \hookrightarrow X$ are the inclusion maps. Thus, there is an equivalence of categories

 $M(X) \xleftarrow{\sim} \{\text{representations of } \pi_1(U) \times \pi_1(Z)\}.$

Thus, perverse sheaves with respect to a non-Goresky–MacPherson perversity are not that interesting—they do not encode topological information about the singularities of X.

- 4. Let \mathcal{F} be a perverse sheaf, and let S be a stratum that is open in the support of \mathcal{F} . Show that $(\mathcal{F}|_S)[-p(S)]$ is a local system (in particular, you must show that it is an ordinary sheaf, not a complex of sheaves). Next, let \mathcal{E} be that local system. Show that $\mathrm{IC}(\bar{S}, \mathcal{E})$ occurs as a quotient in the Jordan-Hölder series for \mathcal{F} . (That is, show that $\mathrm{IC}(\bar{S}, \mathcal{E})$ is a quotient of some sub-perverse sheaf of \mathcal{F} .)
- 5. Let \mathcal{F} and \mathcal{G} be two perverse sheaves. Show that $\mathcal{E}xt^i(\mathcal{F},\mathcal{G}) = 0$ for all i < 0. (Recall that $\mathcal{E}xt^i(\mathcal{F},\mathcal{G}) = H^i(\mathcal{RHom}(\mathcal{F},\mathcal{G}))$.) (*Hint:* Use induction on the number of strata and a distinguished triangle associated to open and closed inclusions. It may be useful to recall the facts below.)

$j^{-1}R\operatorname{\mathcal{H}om}(\mathcal{F},\mathcal{G})\simeq R\operatorname{\mathcal{H}om}(j^{-1}\mathcal{F},j^{-1}\mathcal{G})$	if j is an open inclusion,
$f^! R \mathcal{H}om(\mathcal{F}, \mathcal{G}) \simeq R \mathcal{H}om(f^{-1}\mathcal{F}, f^! \mathcal{G})$	for any map f .

Note: This result, called "vanishing of negative local Ext's," is an important step in the proof of a theorem that states that perverse sheaves on open sets can be glued together to form a perverse sheaf on the whole space, just like ordinary sheaves can.

- 6. Show that $\operatorname{Hom}(\operatorname{IC}(\overline{S}, \mathcal{E}), \operatorname{IC}(\overline{S}, \mathcal{F})) \simeq \operatorname{Hom}(\mathcal{E}, \mathcal{F})$ (where \mathcal{E} and \mathcal{F} are local systems on S).
- 7. (Schur's lemma for perverse sheaves) Show that if \mathcal{E} is a simple local system on a connected stratum S, then Hom $(\mathrm{IC}(\bar{S}, \mathcal{E}), \mathrm{IC}(\bar{S}, \mathcal{E})) \simeq \mathbb{C}$. (*Hint:* First show that Hom $(\mathcal{E}, \mathcal{E}) \simeq \mathbb{C}$, and use the preceding exercise.)