In this problem set (and henceforth in the course), the following slight abuse of language will be made: if \(\rho : \pi_1(X, x_0) \rightarrow GL(E) \) is a representation of \(\pi_1(X, x_0) \) on the vector space \(E \), we will call \(E \) itself “the representation.” (Thus, “Let \(E \) be a representation of \(\pi_1(X, x_0) \)” means “Let \(E \) be a complex vector space, and suppose there is a representation \(\pi_1(X, x_0) \rightarrow GL(E) \) of \(\pi_1(X, x_0) \) on \(E \).”)

1. Let \(F, G, \) and \(H \) be sheaves of abelian groups on \(X \). Prove that

\[
\text{Hom}(F \otimes G, H) \cong \text{Hom}(F, \text{Hom}(G, H)) \quad \text{and} \quad \text{Hom}(F \otimes G, H) \cong \text{Hom}(F, \text{Hom}(G, H))
\]

by using the corresponding facts for abelian groups.

2. Problem 2 of Problem Set 2 asked you to show that \((j_!, j_\ast) \) is an adjoint pair, where \(j : U \hookrightarrow X \) is an open inclusion. State and prove a sheaf-Hom version of that theorem. (Note that it does not make sense to say \(\text{Hom}_X(j_!F, G) \cong \text{Hom}_U(F, j_\ast G) \).)

3. Show that there is an equivalence of categories

\[
\text{(local systems on } X) \leftrightarrow \text{(representations of } \pi_1(X, x_0)).
\]

In other words: In class, we have shown that there is a bijection between isomorphism classes of local systems and isomorphism classes of representations of \(\pi_1(X, x_0) \). Now, let \(E \) and \(F \) be representations of \(\pi_1(X, x_0) \), and let \(E \) and \(F \) be the corresponding local systems on \(X \). Given a morphism \(\phi : E \rightarrow F \), associate to it an equivariant linear transformation (also called an “intertwining operator”) \(S : E \rightarrow F \). Conversely, given an equivariant linear transformation \(T : E \rightarrow F \), construct an associated morphism \(\psi : E \rightarrow F \). Finally, show that the two assignments \(\phi \mapsto S \) and \(T \mapsto \psi \) are inverse to each other.

4. If \(E \) and \(F \) are local systems, show that \(\text{Hom}(E, F) \) and \(E \otimes F \) are as well. What are their ranks in terms of rank \(E \) and rank \(F \)? (The rank of a local system is the dimension of any of its stalks.)

5. In the setting of the previous problem, let \(E \) and \(F \) be the representations of \(\pi_1(X, x_0) \) corresponding to \(E \) and \(F \). There is a natural way to regard the vector spaces \(\text{Hom}(E, F) \) and \(E \otimes F \) as representations of \(\pi_1(X, x_0) \) as well. (Ask me if you can’t figure out how yourself.) Show that the local systems corresponding to these representations are precisely \(\text{Hom}(E, F) \) and \(E \otimes F \).

6. Let \(E \) and \(F \) be two nonisomorphic irreducible representations of \(\pi_1(X, x_0) \). (A representation is irreducible if contains no nontrivial subspace that is stable under the action of \(\pi_1(X, x_0) \).) Show that \(\text{Hom}(E, F) = 0 \). (Note, however, that the sheaf \(\text{Hom}(E, F) \) is not, in general, the zero sheaf.)