Problem Set 5

February 15, 2007

- 1. Gelfand & Manin, Methods of Homological Algebra, Exercise II.5.2 (page 119).
- 2. Ibid., Exercise II.5.5 (page 120). (Note: See Exercise II.5.4 for the definition of "f(y).")
- 3. Let $A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \longrightarrow A[1]^{\bullet}$ be a distinguished triangle (in $K(\mathcal{A})$ or $D(\mathcal{A})$). Show that $g \circ f = 0$.
- 4. Let $0 \longrightarrow A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \longrightarrow 0$ be a short exact sequence in $C(\mathcal{A})$. Define a morphism θ : cone[•] $f \to C^{\bullet}$ by the matrix $\begin{pmatrix} 0 & g \end{pmatrix}$. Show that θ is indeed a morphism of complexes (*i.e.*, that it commutes with differentials) and that the following diagram commutes:

$$\begin{array}{ccc} A^{\bullet} & \stackrel{f}{\longrightarrow} B^{\bullet} & \longrightarrow & \operatorname{cone}^{\bullet} f \\ \left\| \begin{array}{c} & \\ \end{array} \right\| & \\ A^{\bullet} & \stackrel{f}{\longrightarrow} B^{\bullet} & \stackrel{g}{\longrightarrow} C^{\bullet} \end{array}$$

Finally, show that θ is a quasi-isomorphism. Deduce that in $D(\mathcal{A})$ (but not necessarily in $K(\mathcal{A})$), there is a distinguished triangle of the form $A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \to A[1]^{\bullet}$.

- 5. Prove that the octahedral property holds for distinguished triangles in $D(\mathcal{A})$.
- 6. Given a complex A^{\bullet} , define new complexes $\tau_{\leq 0}A^{\bullet}$ and $\tau_{\geq 1}A^{\bullet}$ by

$$(\tau_{\leq 0}A)^{i} = \begin{cases} A^{i} & \text{if } i < 0, \\ \ker d^{0}_{A} & \text{if } i = 0, \\ 0 & \text{if } i > 0 \end{cases} \quad \text{and} \quad (\tau_{\geq 1}A)^{i} = \begin{cases} 0 & \text{if } i < 1 \\ \cosh d^{0}_{A} & \text{if } i = 1, \\ A^{i} & \text{if } i > 1. \end{cases}$$

There is an obvious way to define differentials (so that $\tau_{\leq 0}A^{\bullet}$ and $\tau_{\geq 1}A^{\bullet}$ are actually complexes), as well as obvious morphisms $\tau_{\leq 0}A^{\bullet} \to A^{\bullet}$ and $A^{\bullet} \to \tau_{\geq 1}A^{\bullet}$. Find all of these, and then show that there is a distinguished triangle

$$\tau_{\leq 0}A^{\bullet} \to A^{\bullet} \to \tau_{\geq 1}A^{\bullet} \to \tau_{\leq 0}A[1]^{\bullet}$$

What can you say about the cohomology objects of the three complexes $\tau_{<0}A^{\bullet}$, A^{\bullet} , and $\tau_{>1}A^{\bullet}$?