Problem Set 6

March 1, 2007

1. Let \mathcal{F}^{\bullet} and \mathcal{G}^{\bullet} be complexes of sheaves. Show that $\underline{\operatorname{Hom}}(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet})$ and $\mathcal{F}^{\bullet} \otimes \mathcal{G}^{\bullet}$ (graded tensor product) are well-defined complexes (that is, that $d^2 = 0$). In class, we defined R Hom and \otimes^L as functors only of the second variable: for a fixed $\mathcal{F}^{\bullet} \in C^{-}(\mathfrak{Sh}_{X})$, we have

$$R\operatorname{Hom}(\mathcal{F}^{\bullet}, -): D^{+}(\mathfrak{Sh}_{X}) \to D^{+}(\mathfrak{Ab})$$
$$\mathcal{F}^{\bullet} \overset{L}{\otimes} -: D^{-}(\mathfrak{Sh}_{X}) \to D^{-}(\mathfrak{Sh}_{X})$$

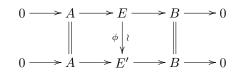
Show that *R* Hom can be regarded as a contravariant functor in its first variable, and that \otimes^{L} can be regarded as a covariant functors in its first variable. *A priori*, these variables are $C^{-}(\mathfrak{Sh}_{X})$; show that in fact they can be regarded as being in $D^{-}(\mathfrak{Sh}_{X})$. Thus, *R* Hom and \otimes^{L} become bifunctors:

$$R\operatorname{Hom}: D^{-}(\mathfrak{Sh}_{X}) \times D^{+}(\mathfrak{Sh}_{X}) \to D^{+}(\mathfrak{Ab})$$
$$\overset{L}{\otimes}: D^{-}(\mathfrak{Sh}_{X}) \times D^{-}(\mathfrak{Sh}_{X}) \to D^{-}(\mathfrak{Sh}_{X})$$

- 2. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact functor, and suppose that \mathcal{A} has enough injectives, so that RF is defined. Given an object A of \mathcal{A} , regard it as a complex with nonzero term only in degree 0 in the obvious way. Show that $H^0(RF(A)) \simeq F(A)$.
- 3. Let $F : \mathcal{A} \to \mathcal{B}$ be a left-exact functor, and suppose that \mathcal{A} has enough injectives, so that RF is defined. If F happens to actually be exact, it gives rise to a functor $F : D(\mathcal{A}) \to D(\mathcal{B})$ in a more direct way than the derived-functor construction. Show that this latter functor coincides with RF on $D^+(\mathcal{A})$.
- 4. Let A^{\bullet} and B^{\bullet} be complexes of objects of an abelian category \mathcal{A} with enough injectives. Show that $H^0(R\operatorname{Hom}(A^{\bullet}, B^{\bullet})) \simeq \operatorname{Hom}_{D(\mathcal{A})}(A^{\bullet}, B^{\bullet}).$
- 5. (Extensions) Let A and B be objects of an abelian category \mathcal{A} that has enough injectives. An *extension* of B by A is simply a short exact sequence

$$0 \to A \to E \to B \to 0.$$

Two extensions are *isomorphic* if there exists an isomorphism ϕ making the following diagram commute:



Show that there is a bijection between isomorphism classes of extensions of B by A and elements of the abelian group $\text{Ext}^1(B, A)$. (*Hint*: Regard A and B as complexes, and first show, using distinguished triangles, that there is a bijection between isomorphism classes of extensions and $\text{Hom}_{D(\mathcal{A})}(B, A[1])$. Then use the preceding exercise.) What extension corresponds to $0 \in \text{Ext}^1(B, A)$?

6. Let \mathcal{F}^{\bullet} and \mathcal{G}^{\bullet} be complexes of sheaves on Y, and let $f : X \to Y$ be a continuous map. Show that $f^{-1}(\mathcal{F}^{\bullet} \otimes^{L} \mathcal{G}^{\bullet}) \simeq (f^{-1}\mathcal{F}^{\bullet}) \otimes^{L} (f^{-1}\mathcal{G}^{\bullet})$. (You'll need to first prove the corresponding statement in the nonderived setting.)