Problem Set 7

March 13, 2007

- 1. Let \mathcal{F} be a sheaf on X, and let \mathcal{G} be an injective sheaf on X. Show that $\mathcal{H}om(\mathcal{F},\mathcal{G})$ is flasque. Your proof should be valid in the category of sheaves of abelian groups (in particular, do not assume that \mathcal{F} is flat, and do not cite the result proved in class that states that $\mathcal{H}om(\mathcal{F},\mathcal{G})$ is injective if \mathcal{F} is flat and \mathcal{G} is injective).
- 2. Show that a sheaf \mathcal{F} is injective if and only if $\mathcal{H}om(-,\mathcal{F})$ is an exact functor.
- 3. (Uniqueness of adjoint functors) Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor of abelian categories, and let $G, H : \mathcal{B} \to \mathcal{A}$ be two functors that are both right adjoint to F. Show that $G \simeq H$. *I.e.*, show that there is a rule η that assigns to every object $B \in \mathcal{B}$ a morphism $\eta(B) : G(B) \to H(B)$ in \mathcal{A} such that for every morphism $f : B \to C$ in \mathcal{B} , the following square commutes:

$$\begin{array}{c|c} G(B) \xrightarrow{\eta(B)} H(B) \\ G(f) & \downarrow & \downarrow H(f) \\ G(C) \xrightarrow{\eta(C)} H(C) \end{array}$$

- 4. Let $j: U \hookrightarrow X$ be an inclusion of an open set. Show that $j! = j^{-1}$.
- 5. Let $j: U \hookrightarrow X$ be an inclusion of an open set. Let $Z = X \setminus U$, and let $i: Z \hookrightarrow X$ be the inclusion of Z into X. Define a functor $i^{\diamond} : \mathfrak{Sh}_X \to \mathfrak{Sh}_Z$ by

$$i^{\diamond}\mathcal{F} = i^{-1}(\ker(\mathcal{F} \to j_*j^{-1}\mathcal{F}))$$

where $\mathcal{F} \to j_* j^{-1} \mathcal{F}$ is the obvious morphism. Show that (i_*, i^\diamond) is an adjoint pair. Also show that i^\diamond is left-exact, and that $i^! = Ri^\diamond$.

6. Let $i : \{x\} \hookrightarrow X$ be the inclusion of a point. Show that $i^* \mathbb{D} \mathcal{F}^{\bullet} \simeq \mathbb{D} i^! \mathcal{F}^{\bullet}$. Do not use the more general version of this fact that was proved in class—the proof of that statement requires this one to be known first. (*Hint*: First, using adjointness of Ra_1 and $a^!$ where $a : X \to \{\text{pt}\}$ is a map to a one-point space, show that

$$R\Gamma(U, \mathbb{D}\mathcal{F}^{\bullet}) \simeq R \operatorname{Hom}(R\Gamma_c(U, \mathcal{F}^{\bullet}), \mathbb{C}).$$

Then, show that

$$\lim_{\substack{\leftarrow\\ U\ni x}} R\Gamma_c(U, \mathcal{F}^{\bullet}) \simeq Ri^{\diamond} \mathcal{F}^{\bullet}.$$
$$i^* \mathbb{D} \mathcal{F}^{\bullet} = \lim_{\substack{\leftarrow\\ U \ni x}} R\Gamma(U, \mathbb{D} \mathcal{F}^{\bullet})$$

to complete the proof.)

Finally, use the fact that

- 7. Give an example showing that $f^!$ is not, in a general, a derived functor. (*Hint*: if $f^!$ were a derived functor, it would have to be the derived functor of $H^0 \circ f^!$. Find an example of a map $f: X \to Y$ such that $H^0(f^!\mathcal{F})$ is always 0, but $f^!\mathcal{F}$ is not.)
- 8. Prove all the statements from the following list that were not proved in class.