Problem Set 8

March 20, 2007

The goal of this problem set is to illustrate that the concept of *t*-structure is not trivial: the heart of a nontrivial *t*-structure on the derived category of an abelian category need not be equivalent to the original abelian category.

NOTE: Please do not hand in Problem 1 for credit. (You may of course hand it in if you just want me to look over your solution.)

1. Let \mathcal{A} (resp. \mathcal{B}) be the category whose objects V are diagrams of complex vector spaces of the form

$$V_1 \to V_2 \leftarrow V_3$$
 resp. $V_1 \leftarrow V_2 \to V_3$,

and in which a morphism $f: V \to W$ is a commutative diagram

$$V_1 \longrightarrow V_2 \longleftarrow V_3 \qquad V_1 \longleftarrow V_2 \longrightarrow V_3$$

$$f_1 \downarrow \qquad f_2 \downarrow \qquad f_3 \downarrow \qquad \text{resp.} \qquad f_1 \downarrow \qquad f_2 \downarrow \qquad f_3 \downarrow$$

$$W_1 \longrightarrow W_2 \longleftarrow W_3 \qquad W_1 \longleftarrow W_2 \longrightarrow W_3$$

Show that up to isomorphism, there are exactly three simple objects of \mathcal{A} (resp. \mathcal{B}) are

$$E_1 = (\mathbb{C} \to 0 \leftarrow 0) \qquad F_1 = (\mathbb{C} \leftarrow 0 \to 0)$$
$$E_2 = (0 \to \mathbb{C} \leftarrow 0) \qquad \text{resp.} \qquad F_2 = (0 \leftarrow \mathbb{C} \to 0)$$
$$E_3 = (0 \to 0 \leftarrow \mathbb{C}) \qquad F_3 = (0 \leftarrow 0 \to \mathbb{C})$$

2. Compute $\operatorname{Ext}^{1}(E_{i}, E_{j})$ and $\operatorname{Ext}^{1}(F_{i}, F_{j})$. Specifically, show that

dim Ext¹(
$$E_i, E_j$$
) =

$$\begin{cases}
1 & \text{if there is an arrow from } V_i \text{ to } V_j \text{ in objects of } \mathcal{A}, \\
0 & \text{otherwise.}
\end{cases}$$

and similarly for \mathcal{B} . (*Hint*: Use the relationship between Ext¹ and extensions given by Problem 5 of Problem Set 6.) Then, deduce that \mathcal{A} and \mathcal{B} are *not* equivalent categories.

3. In this problem, you will show that although \mathcal{A} and \mathcal{B} are inequivalent abelian categories, their derived categories are equivalent. Let $S: D(\mathcal{A}) \to D(\mathcal{B})$ be the functor that takes a complex V^{\bullet} (whose *i*th term is the diagram $V^i = (V_1^i \xrightarrow{f_i} V_2^i \xleftarrow{g_i} V_3^i)$) to the complex whose terms are

$$S(V^{\bullet})^{i} = (V_{1}^{i} \stackrel{(1\ 0\ 0)}{\longleftarrow} V_{1}^{i} \oplus V_{2}^{i-1} \oplus V_{3}^{i} \stackrel{(0\ 0\ 1)}{\longrightarrow} V_{3}^{i})$$

and whose differentials $d^i_{S(V^{\bullet})}:S(V^{\bullet})^i\to S(V^{\bullet})^{i+1}$ are given by

On the other hand, given a complex W^{\bullet} in $D(\mathcal{B})$, with terms $W^{i} = (W_{1}^{i} \stackrel{h_{i}}{\leftarrow} W_{2}^{i} \stackrel{k_{i}}{\longrightarrow} W_{3}^{i})$, let $T(W^{\bullet})$ be the complex in $D(\mathcal{A})$ given by

$$T(W^{\bullet})^{i} = (W_{1}^{i} \xrightarrow{\begin{pmatrix} 0\\0 \end{pmatrix}} W_{1}^{i} \oplus W_{2}^{i+1} \oplus W_{3}^{i} \xrightarrow{\begin{pmatrix} 0\\0 \\1 \end{pmatrix}} W_{3}^{i})$$

with differentials

$$\begin{split} W_1^i & \stackrel{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}{\longrightarrow} W_1^i \oplus W_2^{i+1} \oplus W_3^i \stackrel{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\longleftarrow} W_3^i \\ d_1^i \\ \downarrow & \begin{pmatrix} d_1^i & h_i \\ -d_2^{i+1} \\ k_i & d_3^i \end{pmatrix} \\ W_1^{i+1} & \stackrel{\frown}{\longrightarrow} W_1^{i+1} \oplus W_2^{i+2} \oplus W_3^{i+1} \stackrel{\frown}{\longleftarrow} W_3^{i+1} \end{split}$$

Show that S and T are equivalences of categories, inverse to one another. (Essentially, you must show that $T(S(V^{\bullet}))$ is quasi-isomorphic to V^{\bullet} , and that $S(T(W^{\bullet}))$ is quasi-isomorphic to W^{\bullet} .)

4. By following the standard *t*-structure on $D(\mathcal{B})$ through T over to $D(\mathcal{A})$, we obtain a nonstandard *t*-structure on $D(\mathcal{A})$. (It must be nonstandard because its heart is a copy of \mathcal{B} , not of \mathcal{A} .) Describe this *t*-structure explicitly.