Problem Set 9

March 22, 2007

In this problem set, you will show that the derived category of the heart of a *t*-structure on a triangulated category need not be equivalent to the original triangulated category.

Let X be the 2-sphere. Let \mathcal{C} be the full subcategory of $D^b(\mathfrak{Sh}_X)$ consisting of complexes of sheaves \mathcal{F} all of whose cohomology sheaves $H^i(\mathcal{F})$ are constant ordinary sheaves on X.

- 1. Show that \mathcal{C} inherits from $D^b(\mathfrak{Sh}_X)$ the structure of a triangulated category. (The main thing to show is that any morphism can be completed to a distinguished triangle: if $\mathcal{F} \to \mathcal{G}$ is a morphism in \mathcal{C} , then of course there is a distinguished triangle $\mathcal{F} \to \mathcal{G} \to \mathcal{H} \to \mathcal{F}[1]$ in $D^b(\mathfrak{Sh}_X)$, but is \mathcal{H} necessarily in \mathcal{C} ?)
- 2. Let $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ be the *t*-structure obtained by restricting the standard *t*-structure on $D^b(\mathfrak{Sh}_X)$ to \mathcal{C} :

$$\mathcal{C}^{\leq 0} = \{\mathcal{F} \mid H^i(\mathcal{F}) = 0 \text{ for all } i > 0\},\$$
$$\mathcal{C}^{\geq 0} = \{\mathcal{F} \mid H^i(\mathcal{F}) = 0 \text{ for all } i < 0\}.$$

Let \mathcal{T} be the heart of this *t*-structure. Show that \mathcal{T} is equivalent to the category $\mathfrak{Vect}_{\mathbb{C}}$ of finitedimensional complex vector spaces.

- 3. The bounded derived category $D^b(\mathcal{T})$ is also a triangulated category equipped with a *t*-structure (the standard one). A natural question is: is there an equivalence of categories $\Phi : D^b(\mathcal{T}) \to \mathcal{C}$ that respects all the additional structures on both sides? Such a functor should:
 - be compatible with the shift functors in both categories,
 - take distinguished triangles to distinguished triangles,
 - take $D^b(\mathcal{T})^{\leq 0}$ to $\mathcal{C}^{\leq 0}$ and $D^b(\mathcal{T})^{\geq 0}$ to $\mathcal{C}^{\geq 0}$, and
 - be the identity functor on \mathcal{T} .

Show that there is no such functor. (*Hint*: Consider the constant sheaf $\underline{\mathbb{C}}_X$, which can be regarded as an object of \mathcal{C} , of \mathcal{T} , or of $D^b(\mathcal{T})$. Show that

$$\operatorname{Hom}_{\mathcal{C}}(\underline{\mathbb{C}}_X,\underline{\mathbb{C}}_X[2])\simeq \mathbb{C} \qquad \text{but} \qquad \operatorname{Hom}_{D^b(\mathcal{T})}(\underline{\mathbb{C}}_X,\underline{\mathbb{C}}_X[2])=0.$$

To calculate the Hom group in \mathcal{C} , you will need to use the following fact about the 2-sphere:

$$H^i(X, \mathbb{C}) \simeq \begin{cases} \mathbb{C} & \text{if } i = 0 \text{ or } 2, \\ 0 & \text{otherwise.} \end{cases}$$

You may use this fact without proof. On the other hand, calculating a Hom group in $D^b(\mathcal{T})$ is, by the previous exercise, the same as calculating a Hom group in $D^b(\mathfrak{Vect}_{\mathbb{C}})$.)