Problem Set 2

Due: September 28, 2010

- 1. Classify the 2-dimensional Lie algebras up to isomorphism. In particular, show that every 2-dimensional Lie algebra is solvable.
- 2. Show that \mathfrak{sl}_2 is a simple Lie algebra. (*Hint*: Note that $\dim \mathfrak{sl}_2 = 3$. First show, using the previous exercise, that if \mathfrak{sl}_2 had a nontrivial ideal, then \mathfrak{sl}_2 itself would be solvable. Then, show directly by computing $\mathcal{D}(\mathfrak{sl}_2)$ that \mathfrak{sl}_2 is not solvable.)
- 3. The notion of a Lie algebra makes sense over an arbitrary field, not just over C, but some of the basic theory doesn't go through. Give a counterexample to Lie's theorem over a field of characteristic 2. (*Hint*: if k is an algebraically closed field of characteristic 2, show that 𝔅l₂(k) is solvable, but that there is no flag in k² that is preserved by 𝔅l₂(k).)
- 4. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a nilpotent Lie subalgebra. Is it true that every element of \mathfrak{g} is necessarily a nilpotent endomorphism of V? Give a proof or a counterexample.