1. Classify the 2-dimensional Lie algebras up to isomorphism. In particular, show that every 2-dimensional Lie algebra is solvable.

2. Show that \mathfrak{sl}_2 is a simple Lie algebra. (Hint: Note that $\dim \mathfrak{sl}_2 = 3$. First show, using the previous exercise, that if \mathfrak{sl}_2 had a nontrivial ideal, then \mathfrak{sl}_2 itself would be solvable. Then, show directly by computing $D(\mathfrak{sl}_2)$ that \mathfrak{sl}_2 is not solvable.)

3. The notion of a Lie algebra makes sense over an arbitrary field, not just over \mathbb{C}, but some of the basic theory doesn’t go through. Give a counterexample to Lie’s theorem over a field of characteristic 2. (Hint: if k is an algebraically closed field of characteristic 2, show that $\mathfrak{sl}_2(k)$ is solvable, but that there is no flag in k^2 that is preserved by $\mathfrak{sl}_2(k).$)

4. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a nilpotent Lie subalgebra. Is it true that every element of \mathfrak{g} is necessarily a nilpotent endomorphism of V? Give a proof or a counterexample.