Problem Set 5 (Optional)

- 1. Prove Schur's Lemma, which states that if (V, π) is an irreducible finite-dimensional representation of a group G or a Lie algebra \mathfrak{g} , then the only G- or \mathfrak{g} -equivariant maps $V \to V$ are given by multiplication by a scalar. What happens for infinite-dimensional representations?
- 2. Prove the Poincaré–Birkhoff–Witt theorem for \mathfrak{sl}_2 .
- 3. Let $\mathfrak{h} \subset \mathfrak{sl}_2$ denote the usual Cartan subalgebra consisting of diagonal matrices. Let us identify the dual space \mathfrak{h}^* with \mathbb{C} by sending $\chi \in \mathfrak{h}^*$ to the complex number $\chi([1_{-1}])$. Under this identification, a weight $\chi \in \mathfrak{h}^*$ is integral (resp. dominant integral) if and only if the corresponding complex number is an integer (resp. a nonnegative integer).

Prove that if χ is *not* dominant integral, then the Verma module $M(\chi)$ is irreducible. What weights occur in $M(\chi)$? What are the dimensions of the corresponding weight spaces?

- 4. Show that the "Casimir element" $\Omega = \frac{1}{2}H^2 + EF + FE$ is in the center of the ring $U(\mathfrak{sl}_2)$. Explain why Schur's Lemma implies that Ω acts on finite-dimensional irreducible representations by a scalar, and then determine the scalar by which it acts on each one. How does Ω act on Verma modules?
- 5. Let $G = SL_2$, and let $T \subset G$ denote the usual maximal torus consisting of diagonal matrices. Identify $X^*(T)$ with \mathbb{Z} by the correspondence $\binom{t}{t^{-1}} \mapsto t^n \to t^n \to n$. Let $B \subset G$ be the usual Borel subgroup consisting of upper-triangular matrices. If $\chi \in X^*(T)$ corresponds to $n \in \mathbb{Z}$, show that there is a *G*-equivariant isomorphism

$$\Gamma(G/B, G \times^B \mathbb{C}_{\chi}) \simeq \{ f : \mathbb{C}^2 \to \mathbb{C} \mid f(cx, cy) = c^n f(x, y) \},\$$

where G acts on the latter space by $(\mathfrak{g} \cdot f)(x, y) = f(g^{-1} \cdot (x, y))$. (On the right-hand side, $G = SL_2$ acts on \mathbb{C}^2 by the obvious action.)