Notes on Chapter 6: Division with Remainder

Theorem (Division with Remainder). Let \(n \in \mathbb{N} \) and \(m \in \mathbb{Z} \). There exist unique integers \(q, r \in \mathbb{Z} \) such that

\[
m = nq + r \quad \text{and} \quad 0 \leq r < n.
\]

Proof. The proof is two parts: (1) existence of \(q \) and \(r \) such that \((*)\) is true, and (2) uniqueness of \(q \) and \(r \).

We'll start with existence. Consider the set

\[S = \{m + an : a \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}. \]

Step 1a. \(S \neq \emptyset \).

Proof of Step 1a. We'll consider two cases: \(m \geq 0 \) and \(m < 0 \). If \(m \geq 0 \), let's take \(a = 1 \). Then, since \(n > 0 \), we have \(m + an = m + n \geq 0 \), so \(m + an \) is an element of \(S \). This shows that \(S \neq \emptyset \).

If \(m < 0 \), then let's take \(a = -m \). In this case, we have \(m + an = m - mn = m(1 - n) \). Since \(n \geq 1 \), we know that \(1 - n \leq 0 \). We also have \(m < 0 \) by assumption, so it follows that \(m(1 - n) \geq 0 \). This shows that \(m + an \in S \), so again, \(S \neq \emptyset \). \(\square \)

Note that for all \(c \in S \), we have \(0 \leq c \). Therefore, applying Proposition 2.33 (a variant of the Well-Ordering Principle) to the set \(S \) and the integer \(0 \), we learn that \(S \) has a smallest element. Let

\[r = \text{the smallest element of } S. \]

Since \(r \in S \), there is some \(a \in \mathbb{Z} \) such that \(r = m + an \). Let

\[q = -a. \]

From these definitions, it follows that \(m = nq + r \). To complete the existence part of the proof, we must show that the second condition in \((*)\) holds.

Step 1b. \(0 \leq r < n \).

Proof of Step 1b. The fact that \(r \geq 0 \) is obvious, since \(r \in S \), and every element of \(S \) lies in \(\mathbb{Z}_{\geq 0} \) by the very definition of \(S \). It remains to prove that \(r < n \). We will do this by contradiction. Assume that \(r \geq n \). Then, it follows that \(r - n \geq 0 \). We also have \(r - n = (m - nq) - n = m + (-q - 1)n \). Let \(b = -q - 1 \). Since \(r - n \geq 0 \) and \(r - n = m + bn \), we have shown that \(r - n \in S \). We also have \(r - n < r \), since \(n \in \mathbb{N} \). That is, \(r - n \) is an element of \(S \) that is smaller than \(r \). But that's a contradiction: \(r \) was defined to be the smallest element of \(S \). Therefore, \(r < n \). \(\square \)

The existence part of the proof is done. To prove uniqueness, suppose we have \(q, r, q', r' \in \mathbb{Z} \) such that

\[
m = nq + r, \quad 0 \leq r < n,
m = nq' + r', \quad 0 \leq r' < n.
\]

We must prove that \(q = q' \) and \(r = r' \).

Step 2a. \(r = r' \).

Proof of Step 2a. We will prove this by contradiction. Assume that \(r \neq r' \). Then either \(r < r' \) or \(r > r' \). Assume without loss of generality that \(r > r' \). Then \(r - r' > 0 \), i.e., \(r - r' \in \mathbb{N} \). Next, note that \(r - r' = (m - nq) - (m - nq') = n(q' - q) \). This shows that \(r - r' \) is a natural number divisible by \(n \), so by Proposition 2.23, we have \(r - r' \geq 0 \). But on the other hand, since \(r' \geq 0 \), we have \(r - r' \leq r \), and since \(r < n \), it follows that \(r - r' < n \), a contradiction. Therefore, \(r = r' \). \(\square \)

Step 2b. \(q = q' \).

Proof of Step 2b. We have \(m = nq + r = nq' + r' \), and since \(r = r' \), it follows that \(nq = nq' \). Finally, since \(n \neq 0 \), we have \(q = q' \) by Axiom 1.5. \(\square \)

\(^1\)This means: the reasoning will be exactly the same in the case \(r < r' \), so we will skip writing it down.