Problem Set 1

Due: August 29, 2012

1. Let $X = \mathbb{C}$. Let $\underline{\mathbb{Z}}$ be the constant sheaf on X with stalk \mathbb{Z} . Let \mathcal{F} and \mathcal{G} be the sheaves on X defined as follows:

 $\mathcal{F}(U) = \{ \text{continuous functions } U \to \mathbb{C} \} \quad \text{and} \quad \mathcal{G}(U) = \{ \text{continuous functions } U \to \mathbb{C} \setminus \{0\} \}.$

(Note that $\mathcal{G}(U)$ must be regarded as an abelian group with respect to multiplication, not addition.) Next, we define morphisms $f: \mathbb{Z} \to \mathcal{F}$ and $g: \mathcal{F} \to \mathcal{G}$ as follows:

 $f_U(s) = 2\pi i s \qquad \text{where } s \in \underline{\mathbb{Z}}(U) \text{ is a locally constant function } U \to \mathbb{Z}$ $g_U(s) = e^s \qquad \text{where } s \in \mathcal{F}(U) \text{ is a continuous function } U \to \mathbb{C}$

Show that

$$0 \to \underline{\mathbb{Z}} \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{G} \to 0$$

is a short exact sequence of sheaves. Also, show that the presheaf-image of $g: \mathcal{F} \to \mathcal{G}$ is not a sheaf.

2. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H}$ be an exact sequence of sheaves on X, and let $U \subset X$ be an open set. Show that

 $0 \to \Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{G}) \to \Gamma(U, \mathcal{H})$

is exact. In other words, $\Gamma(U, \cdot)$ is a left-exact functor from the category of sheaves on X to the category of abelian groups. Show by example that $\Gamma(U, \mathcal{G}) \to \Gamma(U, \mathcal{H})$ need not be surjective even if $\mathcal{G} \to \mathcal{H}$ is. (*Hint*: Consider the morphism $g: \mathcal{F} \to \mathcal{G}$ of the previous problem.)

- 3. Choose a few of the following statements and prove them (I did some of these in class). \mathcal{F} and \mathcal{G} are sheaves unless otherwise specified.
 - (a) Let $\{V_i\}$ be an open cover of U, and let $s, t \in \mathcal{F}(U)$. If $s|_{V_i} = t|_{V_i}$ for all i, then s = t. (In particular, if $s|_{V_i} = 0$ for all i, then s = 0.)
 - (b) A section is determined by its germs. That is, if $s, t \in \mathcal{F}(U)$ are sections such that $s_x = t_x$ for all $x \in U$, then s = t.
 - (c) Suppose \mathcal{F} is presheaf, \mathcal{G} is a sheaf, and $\mathcal{F} \subset \mathcal{G}$. Define a subsheaf $\mathcal{F}' \subset \mathcal{G}$ by

 $\mathcal{F}'(U) = \{s \in \mathcal{G}(U) \mid \text{there is a covering } \{V_i\} \text{ of } U \text{ such that } s|_{V_i} \in \mathcal{F}(V_i) \text{ for all } i\}.$

Then $\mathcal{F}^+ \simeq \mathcal{F}'$. In particular, if \mathcal{F} is a sheaf, then $\mathcal{F}^+ \simeq \mathcal{F}$.

- (d) Let \mathcal{F} be a presheaf. The stalks of \mathcal{F}^+ are isomorphic to those of \mathcal{F} .
- (e) Given a morphism $f : \mathcal{F} \to \mathcal{G}$, where \mathcal{F} is a presheaf and \mathcal{G} is a sheaf, there is a unique morphism $f^+ : \mathcal{F}^+ \to \mathcal{G}$ such that $f = f^+ \circ \iota$, where ι is the canonical morphism $\mathcal{F} \to \mathcal{F}^+$.
- (f) A morphism $f : \mathcal{F} \to \mathcal{G}$ is injective if and only if $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective for every open set U. (*Warning*: the corresponding statement for surjective morphisms is not true.)
- (g) A morphism $f : \mathcal{F} \to \mathcal{G}$ is injective (resp. surjective, an isomorphism) if and only if $f_x : \mathcal{F}_x \to \mathcal{G}_x$ is injective (resp. surjective, an isomorphism) for all $x \in X$.
- (h) Let \mathcal{G} be a subsheaf of \mathcal{F} . How should one define the quotient sheaf \mathcal{F}/\mathcal{G} ? (There is an obvious first guess you can make; is that object actually a sheaf, or only a presheaf that needs to be sheafified?) Prove the "first isomorphism theorem": given a morphism $f : \mathcal{F} \to \mathcal{H}$, we have $\mathcal{F}/\ker f \simeq \operatorname{im} f$.