Problem Set 3

Due: October 15, 2012

1. In class, we proved that there are enough flabby sheaves by showing that there is a natural map $\mathcal{F} \to \mathcal{F}^{\sharp}$, where

$$\mathcal{F}^{\sharp}(U) = \{ s : U \to \coprod_{x \in U} \mathcal{F}_x \mid s(x) \in \mathcal{F}_x \}.$$

Prove that in the category of sheaves of complex vector spaces, \mathcal{F}^{\sharp} is actually an injective object, so this shows that the category has enough injectives. How would you need to modify this construction for sheaves of abelian groups? (*Hint for the second part:* The first part will rely on the fact that every complex vector space—including every stalk \mathcal{F}_x —is an injective object in the category of vector spaces.)

- 2. Prove that any injective sheaf is flabby.
- 3. (Uniqueness of adjoint functors) Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor of abelian or triangulated categories, and let $G, H : \mathcal{B} \to \mathcal{A}$ be two functors that are both right adjoint to F. Show that $G \simeq H$. *I.e.*, show that there is a rule η that assigns to every object $B \in \mathcal{B}$ a morphism $\eta(B) : G(B) \to H(B)$ in \mathcal{A} such that for every morphism $f : B \to C$ in \mathcal{B} , the following square commutes:

$$\begin{array}{c|c} G(B) & \xrightarrow{\eta(B)} & H(B) \\ & & & \downarrow \\ G(f) & & & \downarrow \\ & & & \downarrow \\ G(C) & \xrightarrow{\eta(C)} & H(C) \end{array}$$

- 4. Let $j: U \hookrightarrow X$ be an inclusion of an open set. Show that j^* is right-adjoint to $j_!$. (In class, we gave a rather complicated construction for a right adjoint to $f_!$ in general. This problem, combined with the previous one, shows that for an open inclusion $j, j^! \cong j^*$.)
- 5. Let $j: U \hookrightarrow X$ be an inclusion of an open set. Let $Z = X \setminus U$, and let $i: Z \hookrightarrow X$ be the inclusion of Z into X. Define a functor $i^{\diamond} : \mathfrak{Sh}_X \to \mathfrak{Sh}_Z$ by

$$i^{\diamond}\mathcal{F} = i^*(\ker(\mathcal{F} \to j_*j^*\mathcal{F}))$$

where $\mathcal{F} \to j_* j^* \mathcal{F}$ is the obvious morphism. Show that (i_*, i^\diamond) is an adjoint pair. Also show that i^\diamond is left-exact, and that $i^! = Ri^\diamond$.