Derived Categories Cheat Sheet

- 1. A triangulated category is an additive category \mathscr{T} equipped with an automorphism (called shift or translation) $[1]: \mathscr{T} \to \mathscr{T}$ and a collection of diagrams (called distinguished triangles) $X \to Y \to Z \to X[1]$ satisfying the following axioms:
 - (a) (Existence) Any morphism can be completed to a distinguished triangle. Any diagram isomorphic to a distinguished triangle is distinguished.
 - (b) (Identity) $X \xrightarrow{\text{id}} X \to 0 \to X[1]$ is a distinguished triangle.
 - (c) (Rotation) $X \xrightarrow{f} Y \to Z \to X[1]$ is distinguished if and only if $Y \to Z \to X[1] \xrightarrow{-f[1]} Y[1]$ is.
 - (d) (Completion) Any commutative square can be completed to a commutative diagram of distinguished triangles.
 - (e) (Octahedron) Any commutative triangle can be completed to an "octahedral diagram" involving four distinguished triangles and four commutative triangles.
- 2. Let \mathscr{T} and \mathscr{T}' be triangulated categories. An additive functor $F : \mathscr{T} \to \mathscr{T}'$ is called a **triangulated** functor if it commutes with [1] and takes distinguished triangles to distinguished triangles.

Let \mathcal{A} be an abelian category. An additive functor $F : \mathscr{T} \to \mathcal{A}$ is said to be **cohomological** if it takes distinguished triangles to long exact sequences. In other words, given a distinguished triangle $X \to Y \to Z \to X[1]$, the following sequence in \mathcal{A} should be exact:

$$\cdots \to F(Z[-1]) \to F(X) \to F(Y) \to F(Z) \to F(X[1]) \to F(Y[1]) \to F(Z[1]) \to F(X[2]) \to \cdots$$

- 3. Let \mathscr{T} be a triangulated category. For any $X \in \mathscr{T}$, the functors $\operatorname{Hom}(X, -) : \mathscr{T} \to \mathbb{Z}$ -mod and $\operatorname{Hom}(-, X) : \mathscr{T}^{\operatorname{op}} \to \mathbb{Z}$ -mod are cohomological.
- 4. Let \mathcal{A} be an abelian category. Then $Ch(\mathcal{A})$ is again an abelian category, but the **homotopy category** $K(\mathcal{A})$ and the **derived category** $D(\mathcal{A})$, along with their bounded versions $K^{-}(\mathcal{A})$, $D^{+}(\mathcal{A})$, etc., are triangulated categories. In any of these, a distinguished triangle is defined to be any diagram isomorphic to one of the form $X \xrightarrow{f} Y \to \operatorname{cone}(f) \to X[1]$.
- 5. The functors $H^0: \mathcal{K}(\mathcal{A}) \to \mathcal{A}$ and $H^0: \mathcal{D}(\mathcal{A}) \to \mathcal{A}$ are cohomological.
- 6. If $F : \mathcal{A} \to \mathcal{B}$ is a left-exact (resp. right-exact) functor of abelian categories and \mathcal{A} has enough injectives (resp. projectives), there is a triangulated functor called the (total) **right derived functor** $RF : D^+(\mathcal{A}) \to D^+(\mathcal{B})$ (resp. **left derived functor** $LF : D^-(\mathcal{A}) \to D^-(\mathcal{B})$).
- 7. If $0 \to A \to B \to C \to 0$ is a short exact sequence in $Ch(\mathcal{A})$ (or in \mathcal{A}), then in $D(\mathcal{A})$, there is a morphism $C \xrightarrow{\delta} A[1]$ such that $A \to B \to C \xrightarrow{\delta} A[1]$ is a distinguished triangle.
- 8. An object $X \in D(\mathcal{A})$ is zero if and only if $H^i(X) = 0$ for all *i*. (The same does **not** hold for morphisms!)
- 9. For $A, B \in \mathcal{A}$, there is a natural isomorphism $\operatorname{Hom}_{D(\mathcal{A})}(A, B[n]) \cong \operatorname{Ext}^n(A, B)$. When n = 0, this fact tells us that the natural functor $\mathcal{A} \to D(\mathcal{A})$ is fully faithful, i.e., that \mathcal{A} can be thought of as a full subcategory of $D(\mathcal{A})$. An object $X \in D(\mathcal{A})$ belongs to \mathcal{A} if and only if $H^i(X) = 0$ for all $i \neq 0$.
- 10. **Truncation**: for any $X \in D(\mathcal{A})$ and any $n \in \mathbb{Z}$, there is a distinguished triangle $\tau_{\leq n} X \to X \to \tau_{>n+1} X \to X[1]$ with the following properties:
 - (a) $H^i(\tau_{\leq n}X) \to H^i(X)$ is an isomorphism for $i \leq n$, and $H^i(\tau_{\leq n}X) = 0$ for $i \geq n+1$.
 - (b) $H^i(X) \to H^i(\tau_{\geq n+1}X)$ is an isomorphism for $i \geq n+1$, and $H^i(\tau_{\geq n+1}X) = 0$ for $i \leq n$.