1. Let \(\mathcal{A} \) be an abelian category. Show that \(X \in \mathcal{A} \) is projective if and only if \(\text{Ext}^1(X, Y) = 0 \) for all \(Y \in \mathcal{A} \). Similarly, show that \(X \) is injective if and only if \(\text{Ext}^1(Y, X) = 0 \) for all \(Y \).

2. (Not to hand in) Let \(R = \mathbb{C}[t, t^{-1}] \), the ring of Laurent polynomials in one variable. An \(R \)-module is the same as a complex vector space \(V \) equipped with an automorphism \(t : V \to V \). Given an \(R \)-module \(M \), let \(M^t \) be the space of \(t \)-invariants in \(M \):

\[
M^t = \{ m \in M \mid tm = m \}.
\]

Given two \(R \)-modules \(M, N \), consider the space \(\text{Hom}_C(M, N) \) of linear transformations between them. This can be made into an \(R \)-module as follows: for \(f \in \text{Hom}_C(M, N) \), let \((t \cdot f)(m) = tf(t^{-1}m) \). Show that there is a natural isomorphism

\[
\text{Hom}_R(M, N) \cong \text{Hom}_C(M, N)^t.
\]

3. Now prove the derived version of the previous result.

 (a) Explain how to define \(\text{RHom}_C : \text{D}^-(R\text{-mod})^\text{op} \times \text{D}^+(R\text{-mod}) \to \text{D}^+(R\text{-mod}) \).

 (b) Let \(J : \text{R-mod} \to \text{C-mod} \) be the functor \(J(M) = M^t \). Show that \(J \) is left exact.

 (c) Prove that for \(M \in \text{D}^-\text{(R-mod)} \) and \(N \in \text{D}^+\text{(R-mod)} \), there is a natural isomorphism

\[
\text{RHom}_R(M, N) \cong RJ(\text{RHom}_C(M, N)).
\]

 \textbf{Hint:} You will need to show that if \(A, I \in \text{R-mod} \) with \(I \) injective, then \(\text{Hom}_C(A, I) \) is also an injective \(R \)-module.

There is nothing particularly special about the ring \(R \) here—the same statement is true for any commutative \(C \)-algebra. The questions below, however, rely on particular features of \(R \).

4. Show that for any \(M \in \text{R-mod} \), we have \(\text{R}^iJ(M) = 0 \) for \(i \geq 2 \). \textbf{(Hint:} It might be hard to think about injective resolutions in general. Try converting the question into one that involves a projective resolution instead.) Can you give a concrete description of the functor \(\text{R}^iJ : \text{R-mod} \to \text{C-mod} \)?

5. Show that for \(M \in \text{D}^-\text{(R-mod)} \), \(N \in \text{D}^+\text{(R-mod)} \), there is a natural short exact sequence

\[
0 \to \text{R}^1J(H^{-1}(\text{RHom}_C(M, N))) \to \text{Hom}_{\text{D}^-(\text{R-mod})}(M, N) \to J(H^0(\text{RHom}_C(M, N))) \to 0.
\]

 \textbf{Hint:} Try to imitate the proof of the universal coefficient theorem that I did in class.