
Math 7260 Fall 2015
Homological Algebra P. Achar

Problem Set 1
Due: September 10, 2015

1. (Do not hand in) Weibel, Exercises 1.1.1, 1.1.2, 1.1.5.

2. (Do not hand in) Show that any isomorphism of chain complexes is a quasi-isomorphism.

3. (Do not hand in) Weibel, Exercise 1.1.3. Also, give an example of a quasi-isomorphism that is not an
isomorphism.

4. Weibel, Exercise 1.1.4.

5. Let R = C[t]/(t2). Regarding R as a module over itself, consider the R-module homomorphism
f : R→ R given by f(r) = tr. Next, let N be the R-module R/(t) ∼= C[t]/(t). Consider the following
two chain complexes (with nonzero terms only in degrees 0 and −1):

C = (· · · → 0→ R
f→ R→ 0→ · · · ),

D = (· · · → 0→ N
0→ N → 0→ · · · ).

Prove that Hn(C) ∼= Hn(D) for all n, but that there is no quasi-isomorphism u : C → D or u : D → C.

6. A filtered abelian group is an abelian group M together with a fixed collection of subgroups labelled
by integers:

· · · ⊂ F−1M ⊂ F0M ⊂ F1M ⊂ · · · ⊂M.

A filtered homomorphism f : F•M → F•N is a homomorphism of abelian groups f : M → N such
that f(FnM) ⊂ FnN for all n.

(a) (Do not hand in) Show that the category FAb of filtered abelian groups is additive.

(b) Show that FAb has kernels and cokernels. Also, describe in concrete terms the monic and epic
morphisms in this category.

(c) Show that FAb is not abelian. (Hint: Find a morphism that is both epic and monic, but not an
isomorphism.)

7. Let h : Y → X and h′ : Y ′ → X be morphisms in a category. A fiber product of h and h′ (also
called a fiber product of Y and Y ′ over X) is an object denoted Y ×X Y ′ together with morphisms
p1 : Y ×X Y ′ → Y and p2 : Y ×X Y ′ → Y ′ such that the diagram

Y ×X Y ′

p1

��

p2 // Y ′

h′

��
Y

h
// X

commutes, and such that the appropriate universal property holds. (Formulate the universal property
for yourself.) If X is a terminal object, then a fiber product is the same as a product.

(a) Suppose that the fiber product of h : Y → X and h′ : Y ′ → X exists. Prove that if h is epic, then
p2 is epic. Similarly, if h is monic, then p2 is monic.



(b) Prove that in an abelian category, fiber products always exist. (Hint: First work out what a fiber
product is in some concrete setting, like abelian groups or vector spaces. Then try to describe
that construction using only words that make sense in an arbitrary abelian category, such as ⊕,
kernel, cokernel, etc.)

(c) Given a fiber product diagram like that above in an abelian category, prove that “p1 and h′ have
isomorphic kernels.” To make this more precise: let i : K → Y ×X Y ′ be a kernel of p1. Then
show that p2 ◦ i : K → Y ′ is a kernel of h′.

8. (Gelfand–Manin, Ex. II.5.1–3) I have been stressing in class that the word “element” does not make
sense in a arbitrary abelian category. Nevertheless, “diagram-chasing” proofs in homological algebra
do work in arbitrary abelian categories. This exercise justifies that fact, by introducing a notion that
obeys “diagram-chasing” rules of the sort you are used to.

Let A be an abelian category, and let X be an object of A. Define a schmelement of X to be
an equivalence of pairs (Y, h), where Y is an object of A and h : Y → X is a morphism, and the
equivalence relation is given by

(Y, h) ∼ (Y ′, h′) if
there is an object Z and epic morphisms
u : Z → Y , u′ : Z → Y ′ such that hu = h′u′

If y is a schmelement of X, we write y ∈schm X. Choose a couple of the parts below to hand in.

(a) (Do not hand in) Prove that ∼ really is an equivalence relation. It is obvious that it is symmetric
and reflexive. To prove that it is transitive, you’ll have to use fiber products.

(b) Let f : X1 → X2 be a morphism in A, and let y ∈schm X1. Define a schemelement of X2 by the
formula f(y) = (Y, f ◦ h), where (Y, h) is some representative of y. Show that this formula gives
a well-defined map

{schmelements of X1} → {schmelements of X2}.

In the problems below, we write 0 for the schmelement represented by (0, 0). If y is a schmelement
represented by (Y, h), we write −y for the schmelement represented by (Y,−h). Throughout,
f : X1 → X2 is a morphism in A.

(c) f is monic if and only if for any y ∈schm X1, f(y) = 0 implies y = 0.

(d) f is monic if and only if for y, y′ ∈schm X1, f(y) = f(y′) implies y = y′.

(e) f is epic if and only if for any y′ ∈schm X2, there exists a y ∈schm X1 such that f(y) = y′.

(f) f is the zero morphism if and only if f(y) = 0 for all y ∈schm X1.

(g) A sequence Y1
f→ Y2

g→ Y3 is exact at Y2 if and only if g ◦ f = 0 and for any y′ ∈schm Y2 with
g(y′) = 0, there exists a y ∈schm Y1 with f(y) = y′.

(h) Suppose y, y′ ∈schm X1, and that f(y) = f(y′). Then there exists z ∈schm X1 such that g(z) = 0
and, moreover, for any other morphism g : Y1 → Z, we have that g(y) = 0 implies that g(z) =
−g(y′), and g(y′) = 0 implies that g(z) = g(y). (The schmelement z should be thought of as the
“difference” y − y′.)

9. (Do not hand in—but you must do this problem!) Prove the Snake Lemma. Then formulate and prove
a version of the snake lemma that incorporates the naturality of the “connecting homomorphism” ∂
that we discussed in class. When you are done, you may reward yourself by watching

http://www.youtube.com/watch?v=etbcKWEKnvg.
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