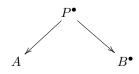
Problem Set 3

Due: November 3, 2015

1. Let \mathcal{A} be an abelian category with enough projectives, and let $A \in \mathcal{A}$. Regard A as a chain complex concentrated in degree 0. Choose a projective resolution $P^{\bullet} \to A$. (Recall that with our new conventions, P^{\bullet} looks like $\cdots \to P^{-2} \to P^{-1} \to P^0 \to 0$.) Show that for any object B^{\bullet} in $D(\mathcal{A})$ and any morphism $f: A \to B^{\bullet}$, f can be represented by a roof of the form



2. Now, assume $B \in \mathcal{A}$. Using the previous problem, show that

$$\operatorname{Hom}_{D(\mathcal{A})}(A, B[n]) \cong \begin{cases} 0 & \text{if } n < 0, \\ \operatorname{Ext}^{n}(A, B) & \text{if } n \ge 0. \end{cases}$$

Remark. Here is a generalization of the "n < 0" case above. (This isn't a homework problem; it relies on facts about $D(\mathcal{A})$ that we haven't gotten to yet.) Let $D(\mathcal{A})^{\leq n}$ denote the subcategory of $D(\mathcal{A})$ consisting of objects X^{\bullet} such that $H^{i}(X^{\bullet}) = 0$ for i > n. Similarly, let $D(\mathcal{A})^{\geq n}$ be the subcategory consisting of X^{\bullet} such that $H^{i}(X^{\bullet}) = 0$ for i < n. If $X^{\bullet} \in D(\mathcal{A})^{\leq n}$ and $Y^{\bullet} \in D(\mathcal{A})^{\geq n+1}$, then

$$\operatorname{Hom}_{D(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) = 0.$$

Convince yourself that the "n < 0" case of the problem is indeed a special case of this fact.

3. Use the fact that $\operatorname{Ext}^{1}(A, B) \cong \operatorname{Hom}_{D(\mathcal{A})}(A, B[1])$ to give a new proof of the fact that

 $\operatorname{Ext}^{1}(A, B) \cong \{ \text{equivalence classes of short exact sequences } 0 \to B \to X \to A \to 0 \}.$