Problem Set 4

Due: December 7, 2015

1. (Not to hand in) Let $R = \mathbb{C}[\mathbf{t}, \mathbf{t}^{-1}]$, the ring of Laurent polynomials in one variable. An *R*-module is the same as a complex vector space *V* equipped with an automorphism $\mathbf{t} : V \to V$. Given an *R*-module *M*, let $M^{\mathbf{t}}$ be the space of \mathbf{t} -invariants in *M*:

$$M^{\mathbf{t}} = \{ m \in M \mid \mathbf{t}m = m \}.$$

Given two *R*-modules M, N, consider the space $\operatorname{Hom}_{\mathbb{C}}(M, N)$ of linear transformations between them. This can be made into an *R*-module as follows: for $f \in \operatorname{Hom}_{\mathbb{C}}(M, N)$, let $(\mathbf{t} \cdot f)(m) = \mathbf{t}f(\mathbf{t}^{-1}m)$. Show that there is a natural isomorphism

 $\operatorname{Hom}_R(M, N) \cong \operatorname{Hom}_{\mathbb{C}}(M, N)^{\mathbf{t}}.$

- 2. Now prove the derived version of the previous result.
 - (a) Explain how to define $R\operatorname{Hom}_{\mathbb{C}}: D^{-}(R\operatorname{-mod})^{\operatorname{op}} \times D^{+}(R\operatorname{-mod}) \to D^{+}(R\operatorname{-mod}).$
 - (b) Let $J: R \text{-mod} \to \mathbb{C}\text{-mod}$ be the functor $J(M) = M^{\mathbf{t}}$. Show that J is left exact.
 - (c) Prove that for $M \in D^{-}(R\text{-mod})$ and $N \in D^{+}(R\text{-mod})$, there is a natural isomorphism

 $R\operatorname{Hom}_R(M, N) \cong RJ(R\operatorname{Hom}_{\mathbb{C}}(M, N)).$

Hint: You will need to show that if $A, I \in R$ -mod with I injective, then $Hom_{\mathbb{C}}(A, I)$ is also an injective R-module.

There is nothing particularly special about the ring R here—the same statement is true for any commutative \mathbb{C} -algebra. The questions below, however, rely on particular features of R.

- 3. Show that for any $M \in R$ -mod, we have $R^i J(M) = 0$ for $i \ge 2$. (*Hint:* It might be hard to think about injective resolutions in general. Try converting the question into one that involves a projective resolution instead.) Can you give a concrete description of the functor $R^1 J : R$ -mod $\rightarrow \mathbb{C}$ -mod?
- 4. Show that for $M \in D^{-}(R\text{-mod})$, $N \in D^{+}(R\text{-mod})$, give two proofs that there is a natural short exact sequence

 $0 \to R^1 J(H^{-1}(R\operatorname{Hom}_C(M, N))) \to \operatorname{Hom}_{D(R\operatorname{-mod})}(M, N) \to J(H^0(R\operatorname{Hom}_C(M, N))) \to 0.$

One proof should involve truncation and distinguished triangles; the other should use a spectral sequence.