
Math 7290 Spring 2015
Quiver Varieties P. Achar

Lecture Notes

Lecture 1 (Jan. 14) Quiver: Q = (Q0, Q1). Repk(Q): category of finite-dimensional representations of
Q over a field k. For s ∈ Q0, let Vs be the representation with k at vertex s and 0’s elsewhere. The Vs’s are
the simple objects of Repk(Q).

Each M ∈ Repk(Q) has a dimension vector dimM : Q0 → Z≥0. Given d : Q0 → Z≥0, form the moduli
space of representations with dimension vector d:

Repd(Q) :=
∏

(s→t)∈Q1

Hom(kd(s), kd(t)).

This is acted on by the groups

Gd :=
∏
s∈Q0

GLd(s)(k) and Ḡd := Gd/(diagonal copy of k×).

The Gd-action on Repd(Q) factors through Ḡd. There is a natural bijection

{Gd- or Ḡd-orbits on Repd(Q)} ←→ {isom. classes of reps of Q with dim vector d}

Lecture 2 (Jan. 16) Rouquier notes §3.3: ADE classification of graphs with positive-definite quadratic
form. The quadratic form of an undirected graph Γ = (Γ0,Γ1) is defined to be the form q on RΓ0 given by

q

(∑
s∈Γ0

xss

)
=
∑
s∈Γ0

x2
s −

∑
(s—t)∈Γ1

xsxt.

For an ADE quiver, define a positive root to be a vector x =
∑
xss with xs ∈ Z≥0 such that q(x) = 1.

Lectures 3–4 (Jan. 21, 23) Rouquier notes §3.4: Gabriel’s Theorem. Repk(Q) contains finitely many
isomorphism classes of indecomposables if and only if Q is an ADE quiver. In that case, the isomorphism
classes of indecomposables are in bijection with the positive roots.

Proof sketch (=⇒). If Q has finitely many indecomposables, then the quadratic form q of the underlying
graph is positive-definite, so Q is an ADE quiver.

Proof sketch (⇐=). If V is indecomposable and has dimension vector d, then V corresponds to a dense orbit
in Repd(Q), and q(d) = 1. Since there are only finitely many positive roots, there are only finitely many
indecomposables.

Both parts of the proof use the following Euler form (recall that Ext≥2 = 0 on Rep(Q)):

〈V,W 〉 =
∑
r≥0

(−1)r Extr(V,W ) = dim Hom(V,W )− dim Ext1(V,W ),

along with the explicit formula

〈V,W 〉 =
∑
s∈Q0

(dimVs)(dimWs)−
∑

(s→t)∈Q1

(dimVs)(dimWt).



For an ADE quiver, we denote the indecomposable objects of Repk(Q) as follows:

{positive roots} ←→ {indecomposables}
γ ←→M(γ)

If γ is a vector corresponding to a vertex t (i.e., γ =
∑
xss with xs = δst), then M(γ) is the simple

representation Vt.

Lecture 5 (Jan. 26) Rouquier notes §3.2: Hall algebra of a finitary category. If A is finitary (i.e. all Hom-
and Ext1-groups are finite sets), thenHA is the C-vector space with basis {isomorphism classes of objects of A},
and multiplication given by

[M ] ∗ [N ] =
∑
[L]

FLM,N [L]

where FLM,N is the number of subobjects L′ ⊂ L such that L′ ∼= N and L/L′ ∼= M .

Example. Let A be the category of finite-dimensional vector spaces over a finite field k = Fq. Then

[kn] ∗ [km] =

(
m+ n

m

)
q

[km+n] and [k]n = [n]q![k
n].

Here the q-binomial coefficient and the q-factorial use the quantum integers [n]q := qn−1
q−1 .

Lectures 6–7 (Jan. 28, 30) General background on abstract root systems, semisimple Lie algebras, and
quantum groups. Notational convention from now on:

Φ is root system, Φ+ ⊂ Φ is the set of positive roots, ∆ ⊂ Φ+ is the set of simple roots

Given the data Φ ⊃ Φ+ ⊃ ∆, the associated generic quantum group is

Uv(g) : a Q(v)-algebra generated by K±1
α , Eα, Fα, with α ∈ ∆.

Its definition involves the v-quantum numbers [(n)]v = vn−v−n
v−v−1 . The Lusztig integral form is

UL,v(g) : the Z[v, v−1]-subalgebra of Uv(g) generated by K±1
α and by the “divided powers”

E(n)
α :=

Enα
[(n)]v!

, F (n)
α :=

Fnα
[(n)]v!

.

Sometimes, it is convenient to define UL,v as a Q[v, v−1]-algebra instead. (There is also a De Concini–Kac
integral form that we will not study.) Given q ∈ C×, the specialized quantum group is defined to be

Uq(g) = C⊗Z[v,v−1] UL,v(g),

where C is made into a Z[v, v−1]-module via v 7→ q. The positive parts

U+
v (g), U+

L,v(g), U+
q (g)

are defined to be the subalgebras generated by just the Eα’s (or by the E
(n)
α ’s in the latter two cases).
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Lectures 8–12 (Feb. 2–11) Ringel’s Theorem. Let Φ ⊃ Φ+ ⊃ ∆ be a simply-laced root system. Let Q
be a quiver whose underlying graph is the Dynkin diagram of that root system. In particular, the set of
vertices Q0 is identified with ∆. Let k = Fq. Endow the Hall algebra HRepk(Q) with a modified product:

[M ] · [N ] = q〈M,N〉/2[M ] ∗ [N ].

Ringel’s Theorem. There is a unique ring isomorphism

U+√
q(g)

∼→ (HRepk(Q), ·) sending Eα to [Vα].

In the proof, we need notation for arbitrary objects of Rep(Q). By Gabriel’s theorem, each γ ∈ Φ+ cor-
responds to an indecomposable object M(γ). (If γ ∈ ∆, then M(γ) ∼= Vγ is simple.) So an arbitrary
representation has the form

M(n) :=
⊕
γ∈Φ+

M(γ)⊕n(γ) for some n : Φ+ → Z≥0.

Proof sketch. See Rouquier’s notes §4.2.3.

1. Construct a ring homomorphism φ : U+√
q(g) → (HRepk(Q), ·). This comes down to checking that the

[Vα]’s satisfy the quantum Serre relations. That, in turn, is a calculation in the Hall algebra of the
quiver •−→•.

2. Show that Φ+ admits an ordering {γ1, . . . , γN} so that Hom(M(γi),M(γj)) = 0 if j < i. On the other
hand, Ext1(M(γi),M(γj)) = 0 if j ≥ i.

3. Let α1, . . . , αn be the order on ∆ induced by that on Φ+. Then

[M(n)] = [M(γ1)n(γ1)]∗· · ·∗ [M(γN )n(γN )] and [M(αn)d(αn)]∗· · ·∗ [M(α1)d(α1)] =
∑

n:Φ+→Z≥0

dim(n)=d

[M(n)].

4. Use the previous step to show that φ is surjective. Then, equip both U+
v (g) and HRepk(Q) with a

grading by Z|∆| = {d : ∆→ Z} by declaring

degEα = dimVα, deg[M ] = dimM.

The map φ preserves this grading. Moreover, corresponding graded components of the two algebras
have the same dimension:

dimU+
v (g)d = |{n : Φ+ → Z≥0 | dim(n) = d}| = dim(HRepk(Q))

d.

So φ is an isomorphism.

Lectures 13–14 (Feb. 13, 18) Lusztig’s geometric Hall algebra. Some new notation:

{Gd-orbits on Repd(Q)} ←→ {reps of Q of dimension d} ←→ {n : Φ+ → Z≥0 | dim(n) = d}
On
oo // n

Let
Fd(Q) = space of Gd-invariant functions Repd(Q)→ C,
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and let χn : Repd(Q) → C be the characteristic function of On. Clearly {χn | dim(n) = d} is a basis for
Fd(Q). There is a vector space isomorphism

F (Q) :=
⊕

d:∆→Z≥0

Fd(Q)
∼→ HRep(Q) that sends χn 7→ [M(n)]. (1)

We will now give F (Q) a ring structure that makes this into a ring isomorphism. Let d′,d′′ : ∆ → Z≥0 be
two dimension vectors, and let d = d′ + d′′.

Any point φ = (φα→β)(α→β)∈Q1
∈ Repd(Q) determines a representation M(φ) of Q with dimM(φ) = d.

Recall that a point g = (gα)α∈∆ acts on φ by g · φ = (gβφα→βg
−1
α ). Consider the diagram

Repd′(Q)× Repd′′(Q)
$← E′

$′→ E′′
$′′→ Repd(Q)

where the intermediate spaces are

E′′ = {(φ,M) | φ ∈ Repd(Q), M ⊂M(φ) a subrepresentation of dimension d′}
= {((φα→β), (Mα)) | (φα→β) ∈ Repd(Q), Mα ⊂ kd(α), dimMα = d′′(α), φα→β(Mα) ⊂Mβ},

E′ = {(φ,M, µ′′, µ′) | (φ,M) ∈ E′′, µ′′ a choice of basis for M , µ′ a choice of basis for M(φ)/M}

= {((φα→β), (Mα), (µ′′α), (µ′α)) | ((φα→β), (Mα)) ∈ E′′, µ′′α : Mα
∼→ kd

′′(α), µ′α : kd(α)/Mα
∼→ kd

′(α)},

and the maps are given by

(ψ′, ψ′′)
$ 7→(φ,M, µ′′, µ′)

$′7→ (φ,M)
$′′7→ φ

where ψ′ = (ψ′α→β) ∈ Repd′(Q) and ψ′′ = (ψ′′α→β) ∈ Repd′′(Q) are given by

ψ′α→β : kd
′(α) (µ′α)−1

→ kd(α)

Mα

φα→β→ kd(β)

Mβ

µ′β→ kd
′(β), ψ′′ : kd

′′(α) (µ′′α)−1

→ Mα
φα→β→ Mβ

µ′′β→ kd
′′(β)

Group actions: we have Gd′ ×Gd′ y Repd′(Q)× Repd′′(Q) and Gd y Repd(Q) as usual, and

Gd′ ×Gd′′ ×Gd y E′ (g′, g′′, g) · (φ,M, µ′′, µ′) = ((gβφα→βg
−1
α ), (gαMα), (g′′αµ

′′
αg
−1
α ), (g′αµ

′
αg
−1
α )),

Gd y E′′ g · (φ,M) = ((gβφα→βg
−1
α ), (gαMα)).

Given a vector space V , let B(V ) be the space of all bases for it. GL(V ) acts on B(V ) freely and transitively.
Let Gr(r, n) denote the Grassmannian of r-dimensional subspaces of kn. The fibers of $ and $′ are smooth:

$−1(ψ′, ψ′′) ∼=
∏
α∈∆

Gr(d′′(α),d(α))×
∏
α∈∆

B(Mα)×
∏
α∈∆

B(kd(α)/Mα)×
∏

(α→β)∈Q1

Ad′(α)d′′(β),

($′)−1(φ,M) ∼=
∏
α∈∆

B(Mα)×
∏
α∈∆

B(kd(α)/Mα)

Gd preserves the fibers of $. Gd′ ×Gd′′ acts freely on E′, and $′ is the quotient map by that action.

Convolution of functions. Given f ′ ∈ Fd′(Q), f ′′ ∈ Fd′′(Q), let f ′ × f ′′ : Repd′(Q)× Repd′′(Q)→ C be the
function (ψ′, ψ′′) 7→ f ′(ψ′)f ′′(ψ′′). Below, we use “pullback” notation for functions: “µ∗h” simply means
h ◦ µ. We define the convolution product f ′ ∗ f ′′ ∈ Fd(Q) by

(f ′ ∗ f ′′)(φ) =
∑

(φ,M)∈($′′)−1(φ)

f̃(φ,M) where f̃ : E′′ → C is the unique function

such that $′∗f̃ = $∗(f ′ × f ′′).

Just by unwinding the definitions, one can show that

χn′ ∗ χn′′ =
∑

n:Φ+→Z≥0

F
M(n)
M(n′),M(n′′)χn, (2)

making (1) into a ring isomorphism.

4



Addendum. There is another way to modify the Hall algebra from the one discussed earlier. Let M and
N be representations of the quiver Q, and let d′ = dimM and d′′ = dimN . Define a new pairing as follows:

〈〈M,N〉〉 =
∑
α∈∆

(dimMα)(dimNα) +
∑

(α→β)∈Q1

(dimMα)(dimNβ) =
∑
α∈∆

d′(α)d′′(α) +
∑

(α→β)∈Q1

d′(α)d′′(β).

(This differs from the Euler form by the sign on the second term.) Let � be the product given by

[M ] � [N ] = q−〈〈M,N〉〉/2[M ] ∗ [N ].

Ringel’s Theorem Redux. There is a unique ring isomorphism

U+√
q(g)

∼→ (HRepk(Q), �) sending Eα to [Vα].

The proof is the same as before; one just needs to do a Hall algebra computation using � instead of ·.
The two versions of Ringel’s theorem together imply that there is a ring isomorphism

(HRepk(Q), ·)
∼→ (HRepk(Q), �).

This cannot be the identity map (although it does send [Vα] to itself).

Proposition. The ring isomorphism (HRepk(Q), ·)
∼→ (HRepk(Q), �) is given by

[M(n)] 7→ q(− dimOn−dim End(M(n))+dimM(n))/2[M(n)],

where dimM(n) means the total dimension
∑
α∈∆ dimM(n)α.

Proof. As a first step, we claim that if d = dim(n), then

−dimOn − dim End(M(n)) + dimM(n) =
∑
α∈∆

d(α)−
∑
α∈∆

d(α)2. (3)

Let γ1, . . . , γN be the ordering on Φ+ that came up in the proof of Ringel’s theorem. Write M(n) as⊕N
i=1M(γi)

n(γi). Let di = dimM(γi)
n(γi), so d =

∑N
i=1 di. We have

End(M(n)) ∼=
⊕
i,j

Hom(M(γi)
n(γi),M(γj)

n(γj)) =
⊕
i≤j

Hom(M(γi)
n(γi),M(γj)

n(γj)).

Since Ext1(M(γi),M(γj)) = 0 for i ≤ j, we have

dim EndM(n) =
∑
i≤j

(dim Hom(M(γi)
n(γi),M(γj)

n(γj))− dim Ext1(M(γi)
n(γi),M(γj)

n(γj))

=
∑
i≤j

〈di,dj〉 =
∑
i≤j
α∈∆

di(α)dj(α)−
∑
i≤j

(α→β)∈Q1

di(α)dj(β).

On the other hand, according to [1, Proposition 6.6], we have

dimOn =
∑
i<j
α∈∆

di(α)dj(α) +
∑
i≤j

(α→β)∈Q1

di(α)dj(β).

Note that the first sum has i < j, while the second has i ≤ j. Note also that
∑
i<j;α di(α)dj(α) =∑

i<j;α dj(α)di(α) =
∑
i>j;α di(α)dj(α). Therefore,
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dimOn + dim End(M(n)) =
∑
i>j
α∈∆

di(α)dj(α) +
∑
i≤j

(α→β)∈Q1

di(α)dj(β) +
∑
i≤j
α∈∆

di(α)dj(α)−
∑
i≤j

(α→β)∈Q1

di(α)dj(β)

=
∑
i,j,α

di(α)dj(α) =
∑
α∈∆

(
N∑
i=1

di(α)

) N∑
j=1

dj(α)

 =
∑
α∈∆

d(α)2.

This proves (3).

Now let n′,n′′ : Φ+ → Z≥0. Let d′ = dim(n′) and d′′ = dim(n′′), and let d = d′ + d′′. Using (3), we see
that the proposition is equivalent to the assertion that

q(
∑

d′(α)−
∑

d′(α)2)/2[M(n′)] � q(
∑

d′′(α)−
∑

d′′(α)2)/2[M(n′′)]

= q〈d
′,d′′〉/2

∑
F
M(n)
M(n′),M(n′′)q

(
∑

d(α)−
∑

d(α)2)/2[M(n)]

By the definition of �, the left-hand side above is equal to

q(
∑

d′(α)−
∑

d′(α)2+
∑

d′′(α)−
∑

d′′(α)2)/2q−〈〈d
′,d′′〉〉/2

∑
F
M(n)
M(n′),M(n′′)[M(n)].

Comparing the coefficients of [M(n)], the proposition reduces to showing that∑
d′(α)−

∑
d′(α)2 +

∑
d′′(α)−

∑
d′′(α)2 − 〈〈d′,d′′〉〉 = 〈d′,d′′〉+

∑
d(α)−

∑
d(α)2.

An easy calculation with the definitions of 〈−,−〉 and 〈〈−,−〉〉 shows that this is the case.

Lectures 15–16 (Feb. 20, 23) Background on sheaves, derived categories of sheaves, sheaf functors.

Intersection cohomology/perverse sheaves. Let X =
⊔
s∈J Xs be a stratified algebraic variety. For each

stratum Xs, there is a unique object IC(Xs) characterized by the following properties:

• IC(Xs) is supported on Xs.

• IC(Xs)|Xs ∼= CXs [dimXs].

• For any Xt ⊂ Xs, Xt 6= Xs, Hi(IC(Xs)|Xt) = 0 for i ≥ −dimXt.

• The preceding property also holds for D(IC(Xs)).

There is a slight generalization of this of this notion that sometimes comes up: for any local system (i.e.,
locally constant sheaf) L on Xs, there is a unique object IC(Xs,L), characterized as above, except that
IC(Xs,L)|Xs ∼= L[dimXs]. (But nontrivial local systems do not occur on Lusztig quiver varieties.)

Let P (X) ⊂ Db(X) be the smallest full subcategory that contains all the IC(Xs,L)’s and is closed under
extensions. That is, for any distinguished triangle F ′ → F → F ′′ → in Db(X), if F ′,F ′′ ∈ P (X), then
F ∈ P (X). Objects of P (X) are called perverse sheaves. Key properties of this category:

• It is an abelian category.

• Every object has a composition series. The IC(Xs,L)’s (for L an irreducible local system) are precisely
the simple objects in this category.

• If µ is a smooth morphism of varieties of relative dimension r, then µ∗[r] ∼= µ![−r] takes perverse
sheaves to perverse sheaves.

• Call an object of Db(X) semisimple if it is a direct sum of various IC(Xs,L)[n]’s. The Decomposition
Theorem asserts that if µ is a proper morphism of varieties, then Rµ∗ takes semisimple objects to
semisimple objects.
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Lectures 17–18 (Feb. 25, 27) Convolution of sheaves. Given F ′ ∈ Db
Gd′

(Repd′(Q)), F ′′ ∈ Db
G′′d

(Repd′′(Q)),

define the convolution product F ′ ∗ F ′′ ∈ Db
Gd

(Repd(Q)) by

F ′ ∗ F ′′ = R$′′∗ F̃ where F̃ ∈ Db
Gd

(E′′) is the unique object such that $′∗F̃ = $∗(F ′ � F ′′).

Let jn : On ↪→ Repd(Q) be the inclusion map, and let Ξn := jn!COn
. Also, for a point φ ∈ Repd(Q), let

F
M(φ)
M(n′),M(n′′) = the variety of submodules M ⊂M(φ) such that M ∼= M(n′′) and M(φ)/M ∼= M(n′).

The sheaf-theoretic analogue of (2) is this: the stalks of Ξn′ ∗ Ξn′′ are given by

(Ξn′ ∗ Ξn′′)|φ ∼= RΓ(F
M(φ)
M(n′),M(n′′)).

For a smooth morphism of varieties µ of relative dimension r, recall that µ! ∼= µ∗[2r], and that the functor
µ] = µ∗[r] ∼= µ![−r] takes perverse sheaves to perverse sheaves. Define the modified convolution product
F ′ � F ′′ ∈ Db

Gd
(Repd(Q)) by

F ′ � F ′′ = R$′′∗ F̃ where F̃ ∈ Db
Gd

(E′′) is the unique object such that $′]F̃ = $](F ′ � F ′′).

From the earlier dimension calculations, one finds that

F ′ � F ′′ ∼= (F ′ ∗ F ′′)[〈〈d′,d′′〉〉].

There is a version Kd of the Grothendieck group of Db
Gd

(Repd(Q)) that is a module over Z[v, v−1], with
the property that [IC(On)[n]] = v−n[IC(On)]. The equation above implies that if On′ ⊂ Repd′(Q) and
On′′ ⊂ Repd′′(Q), then in K,

[IC(On′) � IC(On′′)] = v−〈〈d
′,d′′〉〉[IC(On′) ∗ IC(On′′)].

Using nontrivial facts about mixed sheaves on Repd(Q), one can show that in K,

[IC(On)] = v− dimOn [Ξn] +
∑

n′:On′⊂On; n′ 6=n
i<0

v− dimOn′+i rkH− dimOn′+i(IC(On)|On′ )[Ξn′ ] (4)

The restriction i < 0 is written here for emphasis, but it is not strictly necessary: the terms in the sum
vanish for i ≥ 0 anyway, by one of the defining properties of IC objects.

Theorem (Lusztig). There is an isomorphism of Z[v, v−1]-modules

K :=
⊕

d:∆→Z≥0

Kd
∼→ U+

L,v(g) (5)

such that we have the following behavior of products and objects:

K ∼ // U+
L,v(g)

v 7→√q // U+√
q(g)

Ringel, �
∼

// HRep(Q)
∼ // F (Q)

� oo // mult. // mult. oo // �
∗ // ∗ oo // ∗

[Ξn] oo // �-lift of [M(n)] // [M(n)] oo // χn

Here, the “�-lifts of [M(n)]” are the elements whose existence you proved in Problem Set 2, Exercise 5.
(They are called “�-lifts” because we are using the � version of Ringel’s isomorphism; the · version would
give different elements.)
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The formula (4) highlights the importance of the elements v− dimOn [Ξn]. Let us introduce the elements

En := v− dimOn(�-lift of [M(n)]) = image of v− dimOn [Ξn] under Eq. (5).

The elements {En} form the PBW-type basis of U+
L,v(g).

Canonical basis. Let Bn be the image of [IC(On)] under (5). These elements form a new basis of U+
L,v(g),

called the canonical basis. This basis has two special properties: (i) Positivity : the Decomposition Theorem
implies that

BnBn′ =
∑

mn′′Bn′′ where each mn′′ ∈ Z[v, v−1] is is -stable and has nonnegative coefficients.

(ii) Independence of Q: If Q′ is another quiver with the same underlying undirected graph as Q, there is
an equivalence of derived categories Db

Gd
(Repd(Q)) ∼= Db

Gd
(Repd(Q′)) given by a kind of Fourier transform.

This equivalence commutes with �-convolution, and it sends IC’s to IC’s (although it does not preserve the
labels of orbits). See [1, §13].

The basis elements Bn can be computed explicitly, using an algebraic analogues of the characterization of
the IC(On)’s. First, an analogue of Verdier duality: define an involution

: U+
L,v(g)→ U+

L,v(g) by Eα = Eα (α ∈ ∆), v = v−1.

Let us now translate (4) across the isomorphism (5). For each n : Φ+ → Z≥0, Bn is the unique element of
U+

L,v(g) such that

Bn = En +
∑

m:Φ+→Z≥0

Om⊂On, m 6=n

Pn,mEm with Pn,m ∈ v−1Z[v−1], and Bn = Bn.

If we write them in the {[M(n)]} basis (or, to be precise, in the {�-lift of [M(n)]} basis) instead, we see that
Bn is uniquely characterized by the properties that

Bn = v− dimOn [M(n)] +
∑

m:Φ+→Z≥0

Om⊂On, m 6=n

Pn,m[M(m)] with Pn,m ∈ v− dimOm−1Z[v−1], and Bn = Bn.

Aside. If we use the · version of Ringel’s theorem to lift the [M(n)]’s instead, the setup looks like this:

K ∼ // U+
L,v(g)

v 7→√q // U+√
q(g)

Ringel, ·
∼

// HRep(Q)

� oo // mult. // mult. oo // ·
[Ξn] oo // vdimOn+dim End(M(n))−dimM(n)(·-lift of [M(n)]) // [M(n)]

v− dimOn [Ξn] oo // En = vdim End(M(n))−dimM(n)(·-lift of [M(n)])

This version matches Theorems 4.11 and 4.12 from Rouquier’s notes. Note that both the PBW basis {En}
and the canonical basis {Bn} are the same as above, but the {lift of [M(n)]} basis is different.

Many sources seem to use the · version, which looks really unnatural to me from the geometric perspective.
Lusztig doesn’t use either · or �; instead, he uses ∗, with a slightly different version of Ringel’s theorem that
incorporates the elements K±1

α ∈ UL,v(g).
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GIT
Gy X, χ : G→ C×
semistable: ∃ χn-semi-invt. f : f(x) 6= 0
stable: fin. stabilizer, orbit closed in Xss

S-equivalent: orbit closures meet in Xss

GIT quot.: X//χG↔ S-equiv. classes
Maps: Xss → X//χG→ X//G

Stability for Quivers
Q = (I, E), θ ∈ ZI , v ∈ ZI≥0

Assume: θ · v = 0
V ∈ Rep(Q,v) semistable: ∀ proper sub-

reps N ⊂ V , slopeθ(N) ≤ slopeθ(V )
stable: < instead of ≤
Thm. Semistable reps of fixed slope form

an ab. cat. Stable reps are simple objs.
S-equivalent: same stable composition

factors in this abelian cat.

King’s Theorem
θ ∈ ZI s.t. θ · v = 0  χθ : Ḡv → C×
The two kinds of (semi)stability coincide
for Ḡv y Rep(Q,v) and Rep(Q,v)//χθḠv.

Framings
Q♥, v,w ∈ ZI≥0. Gv y Rep(Q♥,v,w)

Or: Fix w ∈ ZI≥0. Gv y Rep(Qw, v̂)
Isomorphic varieties. Both fine for GIT.

King’s Thm for Framings
θ ∈ ZI . No assumption on θ · v.
But θ̂ ∈ ZI∪{∞} always has θ̂ · v̂ = 0.
Must use Rep(Qw, v̂) for algebraic notion.

Alg. θ̂-(semi-)stability for Rep(Qw, v̂) co-
incides with GIT (semi)stability for Gv y
Rep(Q♥,v,w) and Rep(Q♥,v,w)//χθGv

Symplectic Geometry
Gy X induces Gy T ∗X.
Moment map: µ : T ∗X → g∗. Look at

GIT quotients µ−1(λ)//χG, esp. λ = 0.
µ−1(0) =

⋃
(conormal bdles of orbits in X)

Symplectic Geometry for Quivers
T ∗Rep(Q,v) = Rep(Q,v). g∗v

∼= gv.
µ : Rep(Q,v)→ gv: (x,y) 7→ x ◦ y− y ◦ x
λ ∈ CI , regarded as elt. of gv
Assume: λ · v = 0
Preprojective algebra: Πλ = Πλ(Q).
{Πλ-mod. of dim. vec. v} ↔ µ−1(λ)

King’s Thm for Doubled Quivers
θ ∈ ZI , λ ∈ CI s.t θ · v = λ · v = 0.
Algebraic (semi)stability for Πλ-modules
coincides with GIT (semi)stability for
Ḡv y µ−1(λ) and µ−1(λ)//χθḠv.

Nakajima Quiver Varieties
Q, v,w ∈ ZI , θ ∈ ZI , λ ∈ CI .
No assumptions on θ · v or λ · v
µ : T ∗Rep(Q♥,v,w)=Rep(Q♥,v,w)→gv

(x,y, i, j) 7→ [x,y] + i ◦ j
Defn.: Mλ,θ(v,w) := µ−1(λ)//χθGv

Stability: use Rep(Qw, v̂), Πλ̂(Qw)-mod.

V ∈ Rep(Q♥,v,w) semistable: all pro-
per Q-subreps N ⊂ V satisfy:
Ni ⊂ ker ji ∀i ∈ I ⇒ θ · dimN ≤ 0,
Ni ⊃ im ii ∀i ∈ I ⇒ θ · dimN ≤ θ · v.

stable: < instead of ≤

Pop Quiz

1. What are the definitions of Qw, v̂, and θ̂?

2. Some boxes have assumptions like θ · v = 0 or λ · v = 0, and others don’t. Explain these assumptions.

3. Some boxes use the action of Ḡv, and others use Gv. Explain why.
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