Math 7290 Spring 2015
Quiver Varieties P. Achar
Lecture Notes

Lecture 1 (Jan. 14) Quiver: Q = (Qo, Q1). Rep,(Q): category of finite-dimensional representations of
Q@ over a field k. For s € Qg, let Vs be the representation with k at vertex s and 0’s elsewhere. The V;’s are
the simple objects of Rep,(Q).

Each M € Rep,(Q) has a dimension vector dim M : Qo — Z>o. Given d : Qo — Z>q, form the moduli
space of representations with dimension vector d:

Repa(Q) =[] Hom(r, k1),
(s—t)EQ1

This is acted on by the groups

Gq = H GLq(s) (k) and Ga := Gq/(diagonal copy of k™).
s€Qo

The Gg-action on Repy(Q) factors through Gg4. There is a natural bijection

{Gq- or Gg-orbits on Repy(Q)} +— {isom. classes of reps of @ with dim vector d}

Lecture 2 (Jan. 16) Rouquier notes §3.3: ADE classification of graphs with positive-definite quadratic
form. The quadratic form of an undirected graph I" = (T'o,I'1) is defined to be the form ¢ on RI'y given by

q(vass> =32 3w

sely sely (S*t)GFl

For an ADE quiver, define a positive root to be a vector x = > xss with z, € Z>¢ such that ¢(x) = 1.

Lectures 3—4 (Jan. 21, 23) Rouquier notes §3.4: Gabriel’s Theorem. Rep,(Q) contains finitely many
isomorphism classes of indecomposables if and only if @) is an ADE quiver. In that case, the isomorphism
classes of indecomposables are in bijection with the positive roots.

Proof sketch (=). If @ has finitely many indecomposables, then the quadratic form ¢ of the underlying
graph is positive-definite, so @ is an ADE quiver.

Proof sketch (<=). If V is indecomposable and has dimension vector d, then V corresponds to a dense orbit
in Repq(Q), and ¢(d) = 1. Since there are only finitely many positive roots, there are only finitely many
indecomposables.

Both parts of the proof use the following Euler form (recall that Ext=? = 0 on Rep(Q)):

(V,W) =" (=1)" Ext"(V, W) = dim Hom(V, W) — dim Ext" (V, W),
r>0

along with the explicit formula

(VW) =3 (dim Vi) (dimW,) - > (dim Vi)(dim W3).
sEQo (s—t)eQy



For an ADE quiver, we denote the indecomposable objects of Rep,(Q) as follows:

{positive roots} +— {indecomposables}
v M(y)

If v is a vector corresponding to a vertex t (i.e., v = > xss with x5 = dg), then M(v) is the simple
representation V;.

Lecture 5 (Jan. 26) Rouquier notes §3.2: Hall algebra of a finitary category. If A is finitary (i.e. all Hom-
and Ext'-groups are finite sets), then H 4 is the C-vector space with basis {isomorphism classes of objects of A},
and multiplication given by

[M]* [N] =) Fif v[L]
(L]

where Fj; y is the number of subobjects L' C L such that L' = N and L/L' = M.

FEzample. Let A be the category of finite-dimensional vector spaces over a finite field k¥ = F;. Then

)= () B and =
q
Here the g-binomial coefficient and the g-factorial use the quantum integers [n], := q"_—11
q

Lectures 67 (Jan. 28, 30) General background on abstract root systems, semisimple Lie algebras, and
quantum groups. Notational convention from now on:

® is root system, &' C @ is the set of positive roots, A C ®* is the set of simple roots
Given the data ® D ®* D A, the associated generic quantum group is
U,(g) : a Q(v)-algebra generated by K, E,, F,, with a € A.

Its definition involves the v-quantum numbers [}, = % The Lusztig integral form is

Ur(g) : the Z[v, v~ !]-subalgebra of U,(g) generated by K=' and by the “divided powers”
. Fa . o
n) ._ o] n e @

RN (O : ()

Sometimes, it is convenient to define Uy, , as a Q[v,v~1]-algebra instead. (There is also a De Concini-Kac
integral form that we will not study.) Given g € C*, the specialized quantum group is defined to be

Uq(g) =C ®Z[v,v*1] UL,U(9)7

where C is made into a Z[v,v~!]-module via v — ¢. The positive parts
Ur(g),  Ui,(e),  Uf(e)

are defined to be the subalgebras generated by just the E,’s (or by the Eén)’s in the latter two cases).



Lectures 8-12 (Feb. 2-11) Ringel’s Theorem. Let ® D ® O A be a simply-laced root system. Let Q
be a quiver whose underlying graph is the Dynkin diagram of that root system. In particular, the set of
vertices (g is identified with A. Let k = F,. Endow the Hall algebra Hgep, (@) with a modified product:

[M] - [N] = g™ N2 [M] + [N,
Ringel’s Theorem. There is a unique ring isomorphism
U\’;a(g) = (HRep, (Q)>°) sending F, to [V4].

In the proof, we need notation for arbitrary objects of Rep(Q). By Gabriel’s theorem, each v € ®* cor-
responds to an indecomposable object M(vy). (If v € A, then M(y) = V, is simple.) So an arbitrary
representation has the form

M(n) := @ M ()@ for some  n:®T — Zsg.

yeEDTF
Proof sketch. See Rouquier’s notes §4.2.3.

1. Construct a ring homomorphism ¢ : U\%(g) — (HRep, (@);*)- This comes down to checking that the

[V.]’s satisfy the quantum Serre relations. That, in turn, is a calculation in the Hall algebra of the
quiver e—>e.

2. Show that ®* admits an ordering {v1,...,vn} so that Hom(M (v;), M(7;)) = 0 if j < i. On the other
hand, Extl(M('yi),M('yj)) =0if j > 1.

3. Let ay,...,a, be the order on A induced by that on ®*. Then
[M ()] = [M(72)*0 )55 [M(yn)O™]and - [M (o) ]s -5 [M ()] = 3" [M(n)).

n:dt —Z>0
dim(n)=d

4. Use the previous step to show that ¢ is surjective. Then, equip both U} (g) and HRrep, (@) With a
grading by Z!2! = {d : A — Z} by declaring

deg B, = dim V,, deg[M] = dim M.

The map ¢ preserves this grading. Moreover, corresponding graded components of the two algebras
have the same dimension:

dim U ()% = [{n: &% — Zog | dim(n) = d}] = dim(Hrep, ()"

So ¢ is an isomorphism.

Lectures 13—14 (Feb. 13, 18) Lusztig’s geometric Hall algebra. Some new notation:

{Gq-orbits on Repy(Q)} «+— {reps of Q of dimension d} +— {n:®"t — Z>( | dim(n) = d}
On n

Let
F4(Q) = space of Gg-invariant functions Repy(Q) — C,



and let xn : Repg(Q) — C be the characteristic function of Oy. Clearly {xyn | dim(n) = d} is a basis for
F4(Q). There is a vector space isomorphism

FQ = B Fal@Q > Hrepiq) that sends xn — [M(n)]. (1)
d:A—Z>o

We will now give F(Q) a ring structure that makes this into a ring isomorphism. Let d’,d” : A — Zx be
two dimension vectors, and let d = d’ +d”.

Any point ¢ = (pa—p)a—pc@, € Repq(Q) determines a representation M (¢) of @ with dim M(¢) = d.
Recall that a point ¢ = (ga)aca acts on ¢ by g- ¢ = (9sda—pgs*). Consider the diagram
Repg (Q) x Repa (Q) £ B 5 E” % Repy(Q)
where the intermediate spaces are
={(¢, M) | ¢ € Repy(Q), M C M(¢) a subrepresentation of dimension d’}

(bas5)s (Ma)) | (dasp) € Repa(Q), Mo € kY, dim My = d"(a), ¢ass(Ma) C Mg},
o, M, ", 1) | (9, M) € E”, " a choice of basis for M, p' a choice of basis for M (¢)/M}

Gast)s (M), (1), (1)) | ((Ba—sp)s (Ma)) € B, pf s Mo S5 k¥, il o kA /M, 5 k4 ()Y,

and the maps are given by

—~

/

W' ") & (6, M p" 1) = (6, M) ¢
where ¢ = (¢, ,5) € Repgq/(Q) and 9" = (¥, 5) € Repg,(Q) are given by
ey (o) kA g s KA pd (@) BT dags a3
Wi kY mam—m(ﬁ), A SR O Vi M—>k ()
Group actions: we have Ggr X Gar ~ Repy, (@) X Repg~ (Q) and Gg ~ Repy(Q) as usual, and
Gd’ X Gd” X Gd &% E/ (g/vg”?g) : (¢v Mv ﬂllvp’/) = ((gﬁqsa%ﬁg;l)a (gonoz) (ggcugzga ) (g/OL/’L/DLg(;:l))7
Ga ~E" 9- (&, M) = ((95ba—p9a"): (9aMa))-

Given a vector space V', let B(V) be the space of all bases for it. GL(V') acts on B(V) freely and transitively.
Let Gr(r,n) denote the Grassmannian of r-dimensional subspaces of k™. The fibers of @ and @’ are smooth:

1/] 1p// H Gr( d// ) H B(M,) x H B kd(a)/M ) X H Ad,(a)d”(ﬁ)7
a€EA a€A aEA (a—B)EQ1
(')~ =~ [] B(Ma) x [ Bx*)/M,)
aEA acA

Ggq preserves the fibers of @w. Ggq' x Gq~ acts freely on E’, and @’ is the quotient map by that action.

Convolution of functions. Given f' € Fq/(Q), " € Far(Q), let f' x f” : Repq (Q) x Repg~(Q) — C be the
function (¢, ¢") — f'(W")f"(@"). Below, we use “pullback” notation for functions: “p*h” simply means
h o p. We define the convolution product f'x f” € Fq(Q) by

(f'* ") () = Z f(o, M) where f: E” — C is the unique function
(¢, M)E(w')~1(¢) such that w"™ f = w*(f' x f").

Just by unwinding the definitions, one can show that

M(n
Xn/ * Xn/ = Z F ((n,)) M(n) Xns (2)

n: q>+—)ZZO

making (1) into a ring isomorphism.



Addendum. There is another way to modify the Hall algebra from the one discussed earlier. Let M and
N be representations of the quiver @), and let d’ = dim M and d” = dim N. Define a new pairing as follows:

(M, N) =" (dim My)(dim No) + Y (dim M) (dim Ng) = > d’(a)d”(e) + > d'(a)d"(8).

aEA (a—p)eQ1 aEA (aﬁﬁ)te
(This differs from the Euler form by the sign on the second term.) Let ¢ be the product given by

[M] o [N] = ¢~ EN2[01] « [N].

Ringel’s Theorem Reduz. There is a unique ring isomorphism
U\%(g) 5 (HRep, (Q)5©) sending E, to [V,].

The proof is the same as before; one just needs to do a Hall algebra computation using ¢ instead of -.
The two versions of Ringel’s theorem together imply that there is a ring isomorphism
(MRep,(@):*) = (MRep, (@), ©)-

This cannot be the identity map (although it does send [V,] to itself).
Proposition. The ring isomorphism (Hrep, (@):*) = (HRep, (@), ©) i given by

[M(l’l)] . q(— dim O —dim End(M (n))+dim M (n))/2 [M(H)L

where dim M (n) means the total dimension ) dim M (n),.
Proof. As a first step, we claim that if d = dim(n), then

— dim Oy — dimEnd(M(n)) + dim M(n) = Y d(a) = Y _ d(a)’. (3)
aEA aEA
Let 71,...,7n be the ordering on ®* that came up in the proof of Ringel’s theorem. Write M(n) as
@fil M(%)“(%). Let d; = @M(vﬁ“””, sod = Zi\; d;. We have
End(M @Hom n(%) | M (y,)09)) = @Hom(M('yi)“("“),M(’yj)“("’f)).
1<y

Since Ext' (M (v;), M(7;)) = 0 for i < j, we have

dim End M (n) = " (dim Hom (M (;)*0%), M (y;)™3)) — dim Ext" (M ()"0, M (y;)"2))

i<j
=Y (did)) = Y di(e)d;(@) = Y di(a)d;(8)
i<j i<y i<j
a€A (a—=B)eQn

On the other hand, according to [1, Proposition 6.6], we have
dimOp = Y di(@)d;(e) + > di(e)d;(B)
i<j i<j
acA (a—=B)eQ1

Note that the first sum has i < j, while the second has i < j. Note also that >, ;.  di(a)d;(a) =
Yicjadila)di(a) =37, ., di(a)d;j(a). Therefore,



dim Oy, + dimEnd(M(n)) = )~ di(a Z di(a)d;(8) + > di(a)d;( Z d,(

i>] i<j
aEA (a%ﬁ)GQl aEA (a%ﬁ)GQl
N N
SY @@= Y (z di<a>) S ) - 3 der
iyg,e acA \i=1 =1 aEA

This proves (3).
Now let n’,n"” : ®* — Z>(. Let d’ = dim(n’) and d” = dim(n"”), and let d = d’ + d”. Using (3), we see
that the proposition is equivalent to the assertion that
’ _ ’ o 2 " o)— 1" o 2
¢E (@)= (D2 ()] o ¢ (=2 d" (/21 (n"))

_ q (d’,d"”")/2 Z FM(:’) M(n//)q(zd(a)_z d(a)2)/2[M(n)]

By the definition of ¢, the left-hand side above is equal to

/a_ /(XZ " //a _ ! // Mn
g @ @ D (@) () 2= (@ a2 3 ) ()

Comparing the coefficients of [M (n)], the proposition reduces to showing that

S d(e) = Y (@) + 3 d"(a) = 30 d"(a)? — (', d") = (@,d") + " d() - 3 d()?

An easy calculation with the definitions of (—, —) and ((—, —)) shows that this is the case. O

Lectures 15-16 (Feb. 20, 23) Background on sheaves, derived categories of sheaves, sheaf functors.

Intersection cohomology/perverse sheaves. Let X = | ],.; X, be a stratified algebraic variety. For each
stratum X, there is a unique object IC(X;) characterized by the following properties:

e IC(X,) is supported on X,.
e IC(Xy)|x, = Cx [dim X].

e For any X; C X,, X; # X, H'(IC(X,)|x,) = 0 for i > — dim X;.
e The preceding property also holds for D(IC(X)).

There is a slight generalization of this of this notion that sometimes comes up: for any local system (i.e.,
locally constant sheaf) £ on Xj, there is a unique object IC(Xg, £), characterized as above, except that
IC(X,, £)]x, = L[dim X;]. (But nontrivial local systems do not occur on Lusztig quiver varieties.)

Let P(X) C D®(X) be the smallest full subcategory that contains all the IC(Xj, £)’s and is closed under
extensions. That is, for any distinguished triangle 7/ — F — F” — in D*(X), if 7/, F" € P(X), then
F € P(X). Objects of P(X) are called perverse sheaves. Key properties of this category:

e It is an abelian category.

e Every object has a composition series. The IC(Xj, £)’s (for £ an irreducible local system) are precisely
the simple objects in this category.

e If y is a smooth morphism of varieties of relative dimension r, then u*[r] = u'[—r] takes perverse
sheaves to perverse sheaves.

e Call an object of DP(X) semisimple if it is a direct sum of various IC(Xy, £)[n]’s. The Decomposition
Theorem asserts that if p is a proper morphism of varieties, then Ry, takes semisimple objects to
semisimple objects.



Lectures 17-18 (Feb. 25, 27) Convolution of sheaves. Given F’ € ng, (Repg/ (Q)), F' € Dbg(Repd,, (@),
define the convolution product F’ « F” € Dg_ (Repq(Q)) by

F'«F"=Rw/F  where F € D¢ (E”) is the unique object such that @"*F = w*(F' & F").
Let jn : On = Repq(Q) be the inclusion map, and let Z,, := jnCq_. Also, for a point ¢ € Repqy(Q), let

F%Eﬁ?) M(ny = the variety of submodules M C M (¢) such that M = M(n") and M(¢)/M = M(n').

The sheaf-theoretic analogue of (2) is this: the stalks of =, * E,~ are given by

- = ~ M(¢
(Zw #Zn)ls = RO(FYE) ).

For a smooth morphism of varieties y of relative dimension r, recall that u' = p*[2r], and that the functor
ut = p*[r] = p'[—r] takes perverse sheaves to perverse sheaves. Define the modified convolution product
F'oF" € D¢, (Repqa(Q)) by

FoF"=Rw/F  where F € D¢ (E”) is the unique object such that @"*F = w*(F' B F").
From the earlier dimension calculations, one finds that
f/of// o~ (F/ *.F//)[<<dl,dll>>].

There is a version Kq of the Grothendieck group of ng (Repq(Q)) that is a module over Z[v,v™1], with
the property that [IC(Oy)[n]] = v "[IC(On)]. The equation above implies that if O, C Repg (Q) and
On// C R‘epd” (Q), then in ,C,

IC(Ow) 0 IC(Ogr)] = v~ E4 A DIC(Onr) % IC(Onr)).
Using nontrivial facts about mixed sheaves on Repy(Q), one can show that in K,

[IC(OH)} = dim O [En] + E v dim O,/ +1 rk erdim On/+i(IC(On)|On/)[En’] (4)
n':0,/COn; n'#n
<0

The restriction ¢ < 0 is written here for emphasis, but it is not strictly necessary: the terms in the sum
vanish for ¢ > 0 anyway, by one of the defining properties of IC objects.

Theorem (Lusztig). There is an isomorphism of Z[v, v~!]-modules

K= € Ka>3U,(0) (5)

dZA*)ZZO

such that we have the following behavior of products and objects:

~ v /q Ringel, ¢ ~
K Up,(9) Ula(8) ——=> Hrep@) — = F(Q)
o <—————— mult. mult. o
* * *
[En] =— o-lift of [M (n)] [M(n)] <— Xn

Here, the “o-lifts of [M(n)]” are the elements whose existence you proved in Problem Set 2, Exercise 5.
(They are called “o-lifts” because we are using the ¢ version of Ringel’s isomorphism; the - version would
give different elements.)



The formula (4) highlights the importance of the elements v~ 4™ =, ]. Let us introduce the elements

En = v~ 9O (olift of [M(n)]) = image of v~ 9™ [Z] under Eq. (5).

The elements {E,, } form the PBW-type basis of Uﬂ: ,(9)

Canonical basis. Let By, be the image of [IC(Oy)] under (5). These elements form a new basis of Uf’v (9),
called the canonical basis. This basis has two special properties: (i) Positivity: the Decomposition Theorem
implies that

BnBn = Z My By where each my» € Z[v, v is is “-stable and has nonnegative coefficients.

(ii) Independence of @Q: If @' is another quiver with the same underlying undirected graph as @, there is
an equivalence of derived categories D¢, (Repy(Q)) = Dg; (Repy(Q')) given by a kind of Fourier transform.
This equivalence commutes with o-convolution, and it sends IC’s to IC’s (although it does not preserve the
labels of orbits). See [1, §13].

The basis elements B, can be computed explicitly, using an algebraic analogues of the characterization of
the IC(Oy)’s. First, an analogue of Verdier duality: define an involution

“:Uf(0) = Ul (g) by Ea=E,(a€Ad), Tv=0vl

Let us now translate (4) across the isomorphism (5). For each n : ®* — Zs¢, B, is the unique element of
Uﬂv(g) such that

Ba=En+ >  PamEm with Pam€v 27", and Bn = B,.

m:®+ —>ZZO
OmCOn, m#n

If we write them in the {[M (n)]} basis (or, to be precise, in the {¢-lift of [M(n)]} basis) instead, we see that
By is uniquely characterized by the properties that

Ba=v M [Mn)]+ > Pam[M(m)] with Pym v ™ 1Zp7"],  and By =Ba.
m:<I>+~>ZZO

OmCOn, m#n

Aside. If we use the - version of Ringel’s theorem to lift the [M(n)]’s instead, the setup looks like this:

N v\ /q Ringel, -
K Ui, (0) U a(9) ——= Hrep(@)
o mult. mult. .
[En] =< pdim Ondim End(M (n)~dim M () (__]if¢ of [M(n)]) [M (n)]

p=dmOnz ) o E = pdimEnd(M(n)~dim M(n) (_lift of [ (n)))

This version matches Theorems 4.11 and 4.12 from Rouquier’s notes. Note that both the PBW basis {Ey}
and the canonical basis {B,} are the same as above, but the {lift of [M(n)]} basis is different.

Many sources seem to use the - version, which looks really unnatural to me from the geometric perspective.
Lusztig doesn’t use either - or ¢; instead, he uses *, with a slightly different version of Ringel’s theorem that
incorporates the elements KX! € Uy, ,(g).



Stability for Quivers
Q=,E),0eZ veZl,
Assume: 6-v =0 B
V € Rep(Q, v) semistable: V proper sub-
reps N C V, slopey(N) < slopey(V)
stable: < instead of <
Thm. Semistable reps of fixed slope form

an ab. cat. Stable reps are simple objs. \

S-equivalent: same stable composition
factors in this abelian cat.

Framings
QY, v,weZL, Gy ~Rep(Q”,v,w)
Or: Fix w € ZL,. Gy ~ Rep(Q¥,V)
Isomorphic varieties. Both fine for GIT.

|

Nakajima Quiver Varieties
Q,v,iweZ ez, xeCl.
No assumptions on 6 - v or A-v
w: T*Rep(QY, v, w)=Rep(Q°, v, w) = gy
(x,y,1,J) = [x,y] +ioj
Defn.: My o(v,w) := " (A)//x,Gv
Stability: @Rep(@w,f/), I3 (@")-mod.
V € Rep(Q©,v,w) semistable: all pro-
per Q-subreps N C V satisfy:
N; Ckerj; Vie I =60-dimN <0,
N;Dimi; VielI=0-dimN <0 -v.
stable: < instead of <

King’s Thm for Doubled Quivers
feZl, NeClstf-v=X-v=0.
Algebraic (semi)stability for ITy-modules
coincides with GIT (semi)stability for
Gy v i () and 5 (V) /s G

Pop Quiz

1. What are the definitions of Q%, v, and 0?

2. Some boxes have assumptions like § - v =0 or A -v = 0, and others don’t. Explain these assumptions.

GIT
G X, x:G—C*
semistable: 3 x"-semi-invt. f: f(z) #0
stable: fin. stabilizer, orbit closed in X*%
S-equivalent: orbit closures meet in X**
GIT quot.: X//,G <+ S-equiv. classes
Maps: X** — X//,G — X//G

I

King’s Theorem
0eZ st. 0-v=0~ yg:Gy = C*
The two kinds of (semi)stability coincide
for Gy ~ Rep(Q, v) and Rep(Q, v)//y,Gv-

[

King’s Thm for Framings
6 € Z'. No assumption on 6 - v.
But 6 € Z/Y{>} always has 6 - v = 0.
Must use Rep(QW, v) for algebraic notion.
Alg. 0-(semi-)stability for Rep(QY, V) co-
incides with GIT (semi)stability for Gy
Rep(QY,v,w) and Rep(QY, v, w)//,,Gv

Symplectic Geometry
G ~ X induces G " T*X.
Moment map: p: T*X — g*. Look at
GIT quotients u=*(\)//G, esp. A = 0.
1~ 1(0) = J(conormal bdles of orbits in X)

Symplectic Geometry for Quivers
T*Rep(Q,v) = Rep(Q, v). g3 = gv.
i Rep(Q,v) = gyv: (X,y) > xX0y—yox
A € C!, regarded as elt. of g,
Assume: A-v =0
Preprojective algebra: II, = II,(Q).
{ITx-mod. of dim. vec. v} <+ u=(\)

3. Some boxes use the action of Gy, and others use Gy. Explain why.
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