Math 7290 Spring 2015

Quiver Varieties

Problem Set 1

Due: January 26, 2015

1. (Not to hand in) Let Q be a quiver, and let k be a field. Show the category $Rep_k(Q)$ is equivalent to the category of finite-dimensional kQ-modules.

- 2. Let Q be a quiver with no oriented cycles. (Thanks Jacob!) Classify the simple objects in $\text{Rep}_k(Q)$. Is there a Jordan–Hölder theorem for $\text{Rep}_k(Q)$?
- 3. Let Q be a quiver with no oriented cycles. Consider the following condition on an object (V, ϕ) of $\operatorname{Rep}_k(Q)$:

For every vertex s, the map
$$\bigoplus_{t\to s} V_t \xrightarrow{\bigoplus \phi_{t\to s}} V_s$$
 is injective. (*)

P. Achar

Prove that an object of $\operatorname{Rep}_k(Q)$ is projective if and only if it satisfies (*). As a corollary, deduce that any subobject of a projective object is projective.

4. Let Q be a quiver with no oriented cycles. Prove that $Rep_k(Q)$ has enough projectives. Choose your favorite quiver (not too small!) and determine all the indecomposable projectives in $Rep_k(Q)$.