Problem Set 2

Due: February 13, 2015

- 1. Let $k = \mathbb{F}_q$ be the finite field with q elements. Let $n \ge m \ge 0$. Prove that the number of m-dimensional subspaces of k^n is the q-binomial coefficient $\binom{n}{m}_q$. (Recall that this is defined to be $\frac{[n]_q!}{[m]_q![n-m]_q!}$, where $[n]_q! = [n]_q[n-1]_q \cdots [1]_q$, and where $[n]_q = \frac{q^n-1}{q-1} = q^{n-1} + q^{n-2} + \cdots + q + 1$.) It might be useful to first study the number of complete flags in k^n . A complete flag is a sequence of subspaces $0 = V_0 \subset V_1 \subset \cdots \subset V_n = k^n$ where dim $V_i = i$. Show that k^n contains $[n]_q^1$ complete flags.
- 2. Let V be a real inner product space. For a nonzero vector $\alpha \in V$, let $\alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$. The map

 $s_{\alpha}: V \to V$ given by $s_{\alpha}(v) = v - \langle \alpha^{\vee}, v \rangle \alpha$

is called *reflection across the hyperplane perpendicular to* α . This name is justified by the fact that $s_{\alpha}(\alpha) = -\alpha$, and that $s_{\alpha}(v) = v$ if $\langle \alpha, v \rangle = 0$.

Recall that an *abstract root system* is a finite set Φ of nonzero vectors in a real inner product space V satisfying the following axioms:

- (a) Φ spans V.
- (b) For all $\alpha \in \Phi$, we have $\mathbb{R}\alpha \cap \Phi = \{\alpha, -\alpha\}$.
- (c) For all $\alpha, \beta \in \Phi$, we have $s_{\alpha}(\beta) \in \Phi$.
- (d) For all $\alpha, \beta \in \Phi$, we have $\langle \alpha^{\vee}, \beta \rangle \in \mathbb{Z}$.

Here is an example. Let $\varepsilon_1, \ldots, \varepsilon_n$ be the standard basis vectors for \mathbb{R}^n , equipped with its usual Euclidean inner product. Let $V \subset \mathbb{R}^n$ be the space of vectors $\sum v_i \varepsilon_i$ such that $\sum v_i = 0$.

- (a) Let $\Phi = \{\varepsilon_i \varepsilon_j \mid 1 \le i, j \le n, i \ne j\}$. Prove that Φ is an abstract root system.
- (b) Let $\Phi^+ = \{\varepsilon_i \varepsilon_j \mid i < j\}$, and call these vectors *positive roots*. Determine the set Δ of simple roots (i.e., positive roots that are not the sum of two other positive roots), and draw the Dynkin diagram for this root system. (Answer: It is type A_{n-1} .)
- (c) Show that the two notions of *positive root* (element of Φ^+ , or vector in $\mathbb{Z}_{\geq 0}\Delta$ on which the quadratic form q takes value 1) coincide.
- 3. Recall that $U_v^+(\mathfrak{g})$ admits a grading by $\mathbb{Z}^{|\Delta|} \cong \{\mathbf{d} : \Delta \to \mathbb{Z}\}$, by setting deg $E_\alpha = \underline{\dim}(\alpha)$ for $\alpha \in \Delta$. This induces a grading on any specialization $U_a^+(\mathfrak{g})$. Prove that for any $q \in \mathbb{C}^{\times}$, we have

$$\dim U_q^+(\mathfrak{g})^{\mathbf{d}} = |\{\mathbf{n}: \Phi^+ \to \mathbb{Z}_{\geq 0} \mid \underline{\dim}(\mathbf{n}) = \mathbf{d}\}|.$$

(*Hint:* You will have to use the nontrivial fact that $U_1^+(\mathfrak{g})$ is isomorphic to the universal enveloping algebra $U(\mathfrak{n})$, where $\mathfrak{n} = \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha}$. First prove the dimension calculation in the case q = 1, using the Poincaré–Birkhoff–Witt theorem for $U(\mathfrak{n})$. Then deduce it for general q using the fact that $U_v^+(\mathfrak{g})$ is free over $\mathbb{C}[v, v^{-1}]$.)

4. Show that the modified product on the Hall algebra (shown below) is associative.

$$[M] \cdot [N] = t^{\langle M, N \rangle} [M] * [N]$$

5. Via Ringel's isomorphism $\phi : U_{\sqrt{q}}^+(\mathfrak{g}) \xrightarrow{\sim} \mathcal{H}_{\operatorname{Rep}(Q)}$, we can equip $U_{\sqrt{q}}^+(\mathfrak{g})$ with the basis $\{\phi^{-1}([M(\mathbf{n})]) \mid \mathbf{n} : \Phi^+ \to \mathbb{Z}_{\geq 0}\}$. Prove that this basis is "independent of q": i.e., that it lifts to a $\mathbb{Z}[v, v^{-1}]$ basis of $U_{\mathrm{L},v}^+(\mathfrak{g})$. (*Hint:* Use an induction argument like the one we used in class to show that ϕ is surjective.)