Quiver Varieties

Math 7290 Spring 2015

Problem Set 3

P. Achar

Due: March 13, 2015

1. (Optional) Let $X = \bigsqcup_{s \in I} X_s$ be a stratified complex variety, with dense stratum X_{s_0} . Let $f: Y \to X$ be a surjective proper map, with Y smooth. Assume that f is a small map, which means that

$$\dim f^{-1}(x) \leq \frac{1}{2}(\dim X_{s_0} - \dim X_t)$$
 for $x \in X_t$, with equality only if $t = s_0$.

Show that $Rf_*\underline{\mathbb{C}}_Y[\dim Y] \cong IC(X_{s_0})$. (This is easy if you are used to working with the tools of sheaf theory, such as the "proper base change theorem.")

- 2. Consider the quiver $Q = \bullet$. The Hall algebra $\mathcal{H}_{Rep(Q)}$ has a basis $\{[k^n]\}_{n \in \mathbb{Z}_{\geq 0}}$. Show that when you lift this basis to a basis of $U_{\text{L},\nu}^+(\mathfrak{sl}_2)$ as in Problem Set 2, Exercise 5, the basis element $[k^n]$ lifts to $E_{\alpha}^{(n)}$.
- 3. Fill in as many rows of the in-class worksheet as you can. Extra brownie points if you can give a general formula for the $[M(\mathbf{n})]$'s.
- 4. Determine the canonical basis for $U_{1,v}^+(\mathfrak{sl}_3)$. In more detail, fix a dimension vector $\mathbf{d}: \Delta \to \mathbb{Z}_{>0}$, say

$$\mathbf{d}(\alpha) = p, \quad \mathbf{d}(\beta) = q.$$

Then the possible $\mathbf{n}: \Phi^+ \to \mathbb{Z}_{\geq 0}$ with $\underline{\dim}(\mathbf{n}) = \mathbf{d}$ are of the form

$$\mathbf{n}(\beta) = p - r$$
, $\mathbf{n}(\alpha + \beta) = r$, $\mathbf{n}(\alpha) = q - r$, for some $r, 0 \le r \le \min\{p, q\}$.

Show that

$$B_{\mathbf{n}} = \begin{cases} E_{\alpha}^{(r)} E_{\beta}^{(q)} E_{\alpha}^{(p-r)} & \text{if } p \leq q, \\ E_{\beta}^{(q-r)} E_{\alpha}^{(p)} E_{\beta}^{(r)} & \text{if } p \geq q. \end{cases}$$

(The two formulas coincide with p=q.) There are two ways to solve this:

Algebraically: do this with quantum group and Hall algebra calculations, like on the in-class worksheet. I haven't done this myself, and I do not know how much work it is.

Geometrically: this approach uses more machinery, but it is more conceptual.

(a) Assume for now that $p \leq q$. Let

$$\mathbf{E} = \{ (\phi, M_1 \subset M_2 \subset M(\phi)) \mid \phi \in \operatorname{Rep}_{\mathbf{d}}(Q), M_1 \cong V_{\alpha}^{\oplus (p-r)}, M_2/M_1 \cong V_{\beta}^{\oplus q}, M(\phi)/M_2 \cong V_{\alpha}^{\oplus r} \}.$$
Let $\pi : \mathbf{E} \to \operatorname{Rep}_{\mathbf{d}}(Q)$ be the obvious map $(\phi, M_1 \subset M_2 \subset M(\phi)) \mapsto \phi$. Show, by unrayeling the

Let $\pi: \mathbf{E} \to \operatorname{Rep}_{\mathbf{d}}(Q)$ be the obvious map $(\phi, M_1 \subset M_2 \subset M(\phi)) \mapsto \phi$. Show, by unraveling the definition of convolution of sheaves, that $E_{\alpha}^{(r)} E_{\beta}^{(q)} E_{\alpha}^{(p-r)}$ is the class of $R\pi_* \underline{\mathbb{C}}_{\mathbf{E}}[\dim \mathbf{E}]$.

- (b) Show that **E** is a smooth variety.
- (c) Determine the closure $\overline{\mathcal{O}_{\mathbf{n}}}$. Specifically, let $\mathcal{O}_{\mathbf{m}} \subset \operatorname{Rep}_{\mathbf{d}}(Q)$ be another orbit, say with $\mathbf{m}(\beta) = p s$, $\mathbf{m}(\alpha + \beta) = s$, and $\mathbf{m}(\alpha) = q - s$. Then $\mathcal{O}_{\mathbf{m}} \subset \mathcal{O}_{\mathbf{n}}$ if and only if $s \leq r$.
- (d) Let $\phi \in \text{Rep}_{\mathbf{d}}(Q)$, and compute $\pi^{-1}(\phi)$. The answer depends on the orbit $\mathcal{O}_{\mathbf{m}}$ to which ϕ belongs. Suppose $\mathbf{m}(\beta) = p - s$, $\mathbf{m}(\alpha + \beta) = s$, and $\mathbf{m}(\alpha) = q - s$. Then

$$\pi^{-1}(\phi) = \varnothing \quad \text{if } s > r, \qquad \pi^{-1}(\phi) \cong \operatorname{Gr}(p-r, p-s) \quad \text{if } s \leq r.$$

In particular, the image of π is exactly $\overline{\mathcal{O}_{\mathbf{n}}}$.

(e) Show that dim $\mathcal{O}_{\mathbf{m}} = s(p+q-s)$. (*Hint*: Identify $\mathcal{O}_{\mathbf{m}}$ with the space of linear maps $k^p \to k^q$ of rank s.) Then show that $\pi: \mathbf{E} \to \overline{\mathcal{O}_{\mathbf{n}}}$ is a small map as in Exercise 1. That is, if $\phi \in \mathcal{O}_{\mathbf{m}} \subset \mathcal{O}_{\mathbf{n}}$, then $\dim \pi^{-1}(\phi) \leq \frac{1}{2}(\dim \mathcal{O}_{\mathbf{n}} - \dim \mathcal{O}_{\mathbf{m}})$, with equality if and only if $\mathcal{O}_{\mathbf{n}} = \mathcal{O}_{\mathbf{m}}$, i.e., if s = r.

Combining these results with Exercise 1, one finds that $E_{\alpha}^{(r)}E_{\beta}^{(q)}E_{\alpha}^{(p-r)}=[R\pi_*\underline{\mathbb{C}}_{\mathbf{E}}[\dim\mathbf{E}]]=[\mathrm{IC}(\mathcal{O}_{\mathbf{n}})]=$ $B_{\mathbf{n}}$, as desired. Now produce a similar argument for the case $p \geq q$.