Notes on Jordan Decomposition

Theorem 1 (Jordan Normal Form). Let V be a finite-dimensional vector space. For any linear operator $g \in \text{End}(V)$, there exists an element $x \in \text{GL}(V)$ such that $x^{-1}gx$ is in "Jordan normal form," i.e., it is a block-diagonal matrix made up of Jordan blocks.

Definition 2. Let V be a finite-dimensional vector space. An element $g \in \text{End}(V)$ is called *semisimple* if it is conjugate to a diagonal matrix (equivalently, if V has a basis consisting of eigenvectors for g). It is called *nilpotent* if $g^n = 0$ for $n \gg 0$. It is called *unipotent* if g = 1 is nilpotent.

Theorem 3 (Additive Jordan Decomposition). Let V be a finite-dimensional vector space. For any linear operator $g \in \text{End}(V)$, there exists a unique pair of elements $s, n \in \text{End}(V)$ such that:

- 1. s is semisimple and n is nilpotent;
- 2. s and n commute: sn = ns;
- 3. g = s + n.

Theorem 4 (Multiplicative Jordan Decomposition). Let V be a finite-dimensional vector space. For any linear operator $g \in GL(V)$, there exists a unique pair of elements $s, u \in GL(V)$ such that:

- 1. s is semisimple and u is unipotent;
- 2. s and u commute: su = us;
- 3. g = su.

Definition 5. Let W be an infinite-dimensional vector space. A linear operator $\theta : W \to W$ is called *manageable* if every vector in W is contained in a finite-dimensional subspace that is preserved by θ .

A manageable operator $\theta: W \to W$ is called *semisimple*, resp. *unipotent*, if for every finite-dimensional θ -stable subspace $V \subset W$, the operator $\theta|_V: V \to V$ is semisimple, resp. unipotent. (The terms "semisimple" and "unipotent" are *not defined* for unmanageable operators.)

Theorem 6 (Infinite-Dimensional Jordan Decomposition). Let W be a (possibly infinite-dimensional) vector space, and let $\theta : W \to W$ be a manageable invertible linear operator. Then there exists a unique pair of manageable invertible linear operators $\sigma, v : W \to W$ such that:

- 1. If $V \subset W$ is a finite-dimensional subspace preserved by θ , then σ and v also preserve V. Moreover, $\sigma|_V$ is semisimple, and $v|_V$ is unipotent. (In particular, σ is semisimple and v is unipotent.)
- 2. σ and v commute: $\sigma v = v\sigma$.
- 3. $\theta = \sigma v$.

Proposition 7. Let G be an algebraic group. Any finite-dimensional subspace (and hence any vector) of k[G] is contained in a finite-dimensional subspace that is preserved by all operators ρ_q ($g \in G$).

In particular, the operators $\rho_q: k[G] \to k[G]$ are manageable.

Definition 8. Let G be an algebraic group. An element $g \in G$ is called *semisimple*, resp. *unipotent*, if ρ_g is a semisimple, resp. unipotent, operator in the sense of Definition 5.

Theorem 9. For GL(V), Definitions 2 and 8 coincide.

Theorem 10 (Jordan Decomposition for Algebraic Groups). Let G be an algebraic group. For any $g \in G$, there exists a unique pair of elements $s, u \in G$ such that:

- 1. s is semisimple and u is unipotent (in the sense of Definition 8);
- 2. s and u commute: su = us;

3. g = su.