Structure Theory of Algebraic Groups

Definition 1. A *torus* is an algebraic group that is isomorphic to $\mathbb{G}_m \times \cdots \times \mathbb{G}_m$.

Note that all elements of a torus are semisimple.

Theorem 2. Every connected subgroup of a torus is a torus. More generally, any connected commutative group consisting only of semisimple elements is a torus.

Definition 3. A *unipotent group* is a group all of whose elements are unipotent.

Theorem 4 (Unipotent Group Theorem). Every unipotent group is isomorphic to a subgroup of $\begin{bmatrix} 1 & * & * \\ & & & & \\ & & & \\ & & & & \\ & & & \\ &$

Definition 5. A group G is said to be *solvable* if the sequence of subgroups $G' = [G, G], G'' = [G', G'], \dots$ eventually reaches the trivial group.

Theorem 6 (Lie-Kolchin Theorem). Every solvable group is isomorphic to a subgroup of $\begin{bmatrix} * & * & * \\ & \ddots & * \end{bmatrix}$.

Proposition 7. Let G be a connected solvable group. The set of unipotent elements G_u forms a closed, connected, normal subgroup. Moreover, we have $[G,G] \subset G_u$.

In the setting of this proposition, G/G_u is connected, commutative, and consists only of semisimple elements, so it is a torus. Thus, for any connected solvable group, there is a short exact sequence of algebraic groups

 $1 \to G_{\mathrm{u}} \to G \to T \to 1$ where T is a torus.

Theorem 8 (did not prove). The short exact sequence above splits. In other words, every connected solvable subgroup G is isomorphic to a semidirect product $T \ltimes G_u$.

Such an isomorphism identifies T with a subgroup of G. Every subgroup of G that is isomorphic to T is in fact conjugate to T.

Definition 9. Let G be an algebraic group. A *Borel subgroup* is a connected, solvable closed subgroup that is not a proper subgroup of any other connected, solvable closed subgroup. In other words, a Borel subgroup is a maximal connected, solvable closed subgroup.

A maximal torus $T \subset G$ is a closed subgroup that is a torus, and that is not a proper subgroup of any other subgroup that is a torus.

So the previous (unproved) theorem says that all maximal tori in a connected solvable group are conjugate.

Theorem 10. Let G be an algebraic group. (i) Any two Borel subgroups are conjugate. (ii) Any two maximal tori are conjugate.

We proved part (i) in class. Part (ii) follows, using the unproved Theorem 8.

Theorem 11. Borel subgroups are as non-normal as possible: the normalizer of a Borel subgroup is itself.

Definition 12. Let G be an algebraic group. Its radical R(G) is the unique maximal connected normal solvable subgroup. Its unipotent radical $R_u(G)$ is the unique maximal connected normal unipotent subgroup. The group G is semisimple if R(G) is trivial, and reductive if $R_u(G)$ is trivial.