18.014–ESG Exam 1

Pramod N. Achar

Fall 1999

- 1. State the completeness axiom for \mathbb{R} .
- 2. Which of the following sets are fields? Which are ordered fields?

	Field?	Ordered field?
\mathbb{Z}		
\mathbb{Q}		
\mathbb{C}		

- 3. State the Archimedean property of \mathbb{R} .
- 4. What is a step function?
- 5. Let |x| denote the greatest integer less than or equal to x. Compute the following integrals:

(a)
$$\int_{x=0}^{2} \lfloor x \rfloor$$

(b)
$$\int_{x=0}^{2} \lfloor 2x \rfloor$$

6. What way of forming new partitions from old partitions did we use to show that a sum or product of step functions is again a step function? (*Hint*: Two words.)

- 7. What is a bounded function?
- 8. Compute the following integrals:

(a)
$$\int_{x=0}^{2} x^2$$

(b)
$$\int_{x=0}^{2} (5x^3 + 4x)$$

9. Let $f : [a, c] \to \mathbb{R}$ be a bounded function. Suppose that $\underline{\int}_{a}^{c} f = 2$ and $\overline{\int}_{a}^{c} f = 5$. Is f integrable on [a, c]?

Now suppose that b is some number such that a < b < c, and suppose that $\int_a^b f = -1$ and $\overline{\int}_a^b f = 2$. Is f integrable on [a, b]? What about on [b, c]? If f is integrable on either of these intervals, give the value of its integral on that interval.

- 10. (a) State the triangle inequality.
 - (b) Prove that $|x y| \ge |x| |y|$.
 - (c) Prove that $||x| |y|| \le |x y|$.