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1 The Trigonometric Functions

Consider the following properties which might be satisfied by a given pair of functions u, v : R → R:

Du = v Dv = −u (1)

u(0) = 0 v(0) = 1 (2)

Theorem 1.1. There exists a pair of functions u, v satisfying (1) and (2).

Proof. Deferred. We will do this after we develop some theory of power series.

Theorem 1.2. If there is a pair of functions satisfying (1) and (2), it is unique.

Before we prove this, we need to establish the following:

Lemma 1.3. Suppose that f and g are two functions such that Df = g and Dg = −f . Then f2 + g2 is a
constant.

Proof. Let us compute the derivative of f2 + g2:

D(f2 + g2) = 2f Df + 2g Dg

= 2f · g + 2g · (−f)

= 0.

Recall that if the derivative of a function is identically 0, then the function must be constant. Thus f2 + g2

is constant.

Proof of the uniqueness theorem. Suppose that u and v satisfy (1) and (2); furthermore, suppose that p and
q are functions that satisfy analogues of those conditions: i.e.,

Dp = q Dq = −p

p(0) = 0 q(0) = 1

Our goal is to show that u = p and q = v. To this end, introduce the functions

f = u − p and g = v − q.

Observe that Df = Du − Dp = v − q = g. Similarly, Dg = Dv − Dq = (−u) − (−p) = −f . That means
we can apply Lemma 1.3 to f and g, and conclude that f2 + g2 is a constant. What constant is it? We can
actually compute the value at x = 0, since we know that u(0) = p(0) = 0 and v(0) = q(0) = 1. Therefore,
f(0) = 0 and g(0) = 0, so

f(x)2 + g(x)2 = 0

for all x. But f(x)2 and g(x)2 must be nonnegative, and the only way in which the sum of two nonnegative
numbers can be 0 is that the numbers themselves are 0. That is, f(x)2 = 0 = g(x)2, so in fact f(x) = 0 =
g(x). To say that f and g are identically 0 is precisely to say that u = p and v = q.
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Definition 1.4. The unique pair of functions u, v that satisfy (1) and (2) are called sine and cosine, and
denoted by

u(x) = sin x and v(x) = cosx.

Proposition 1.5. sin2 x + cos2 x = 1.

Proof. This is a direct application of Lemma 1.3. That lemma tells us immediately that sin2 x + cos2 x
is a constant; we just need to check what constant it is. We know that sin 0 = 0 and cos 0 = 1, so
sin2 0 + cos2 0 = 1. It follows that sin2 x + cos2 x = 1.

Proposition 1.6. Addition formulæ for the sine and cosine functions are as follows:

sin(a + b) = sin a cos b + cos a sin b

cos(a + b) = cos a cos b − sina sin b

Proof. Let us define two new functions as follows:

f(x) = sin(x + b) − sin x cos b − cosx sin b

g(x) = cos(x + b) − cosx cos b + sin x sin b

Our goal is to show that f and g are identically zero. Let us try to apply Lemma 1.3 to this problem. The
derivatives of f and g are:

Df = (D sin)(x + b) − (D sin)(x) cos b − (D cos)(x) sin b

= cos(x + b) − cosx cos b + sinx sin b = g

Dg = (D cos)(x + b) − (D cos)(x) cos b + (D sin)(x) sin b

= − sin(x + b) + sin x sin b + cosx sin b = −f

Therefore, the lemma tells us that f2 + g2 is a constant. We can evaluate this at x = 0 explicitly. Since
sin 0 = 0 and cos 0 = 1, we obtain

f(0) = sin b − sin 0 cos b − cos 0 sin b = 0

g(0) = cos b − cos 0 cos b + sin 0 sin b = 0

Hence f2 + g2 is identically zero. It follows that f and g are themselves identically zero.

2 Exponential and Logarithm

Our approach to these functions is very much like our approach to the trigonometric functions. We were
compelled to take the abstract algebraic approach of the preceding section (rather than a geometric one)
because we will not even define the plane R

2 until next semester. We could take a simpler route to the
exponential and logarithm functions, while still being completely rigorous, by defining the logarithm as the
indefinite integral of x−1, and the exponential as the inverse of the logarithm. But there are at least two
reasons to address it in the manner we will actually use:

• It reinforces the basic ideas in our discussion of the trigonometric functions.

• It is more intuitive, in the sense that I have always thought of the exponential as a more “basic”
function than logarithm. This approach lets us define exponential first, and then the logarithm as its
inverse, rather than the other way around.

Let us begin with the following two properties that a function u : R → R might have:

Du = u (3)

u(0) = 1 (4)
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Theorem 2.1. There exists a function u satisfying (3) and (4).

Proof. Deferred. We will do this after we develop some theory of power series.

Theorem 2.2. If there is a function satisfying (3) and (4), it is unique.

Before we prove this, we need to establish the following:

Lemma 2.3. Suppose that u is a function satisfying (3) and (4). Then u(a + b) = u(a)u(b).

Proof. Define a new function f by

f(x) = u(x + a + b)u(−x).

The derivative of f is

Df = Du(x + a + b)u(−x) + u(x + a + b)Du(−x) · (−1)

= u(x + a + b)u(−x) − u(x + a + b)u(−x)

= 0.

Therefore, f is constant. What constant is it? We can evaluate f at x = 0, using the fact that u(0) = 1:

f(0) = u(0 + a + b)u(0) = u(a + b).

That is, f(x) = u(a + b) for all x. Let us write down what this means when x = −b:

f(−b) = u(a)u(b) = u(a + b).

The second equality here is precisely what we wanted to prove.

Corollary 2.4. If u satisfies (3) and (4), then u(x)u(−x) = 1.

Proof of the uniqueness theorem. Suppose that u satisfies (3) and (4); furthermore, suppose that p is a
function that satisfies analogues of those conditions; i.e.,

Dp = p

p(0) = 1

Our goal is to show that u = p. To this end, introduce the function

f(x) = p(x)u(−x).

The derivative of f is given by

Df = Dp(x)u(−x) + p(x)Du(−x) · (−1)

= p(x)u(−x) − p(x)u(−x)

= 0.

Therefore, f is constant. Since p(0) = u(0) = 1, we have f(0) = 1, so in fact f(x) = 1 for all x. In other
words, p(x)u(−x) = 1, so

p(x) =
1

u(−x)
.

But the preceding corollary implies that u(x) = 1/u(−x), so we conclude that u = p.

Definition 2.5. The unique function u satisfying (3) and (4) is called the exponential function, and denoted
by

u(x) = expx.

The number exp 1 is called e.
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Proposition 2.6. The exponential function is positive and strictly increasing.

Proof. We know that exp 0 is positive. Corollary 2.4 says that expx exp(−x) = 1 for all x: this implies, in
particular, that expx 6= 0 for all x. Moreover, expx can never be negative, for if it were, the Intermediate-
Value Theorem (together with the fact that exp 0 is positive) would imply that for some c, exp c = 0, but
we just observed that exp is never zero. Since exp is never zero or negative, it is always positive.

Finally, D exp is always positive as well (because it equals exp), and that means that exp is strictly
increasing.

We already have the notion of raising numbers to rational powers, but the exponential function lets us
make sense of raising positive numbers to arbitrary real powers. Before we do that, however, we need to
make sure that it agrees with our pre-existing notion of rational powers. This verification was not really
done in class, but it is worth doing in writing.

Lemma 2.7. If n is a nonnegative integer, then exp na = (exp a)n.

Proof. We proceed by induction on n, starting at n = 0: we have exp(0a) = 1, which is equal to (exp a)0.
Now assume the statement is known for n = k; we need to prove it for n = k + 1:

exp((k + 1)a) = exp(ka + a)

= expka exp a by Lemma 2.3

= (exp a)k exp a by the inductive assumption

= (exp a)k+1.

Therefore, exp na = (expa)n for all nonnegative n.

Lemma 2.8. If n is any integer, then exp na = (exp a)n.

Proof. We just need to prove it for n negative. If n is negative, −n is positive, so we have

expna = exp(−n)(−a)

= (exp(−a))−n by the preceding lemma

=

(

1

exp a

)

−n

by Corollary 2.4

= (exp a)n.

Lemma 2.9. If n is a positive integer, then exp a
n = n

√
expa.

Proof. We have

(

exp
a

n

)n

= exp
(

n · a

n

)

by Lemma 2.7

= exp a.

That is, exp a
n is a positive number whose nth power is exp a, so it must be equal to n

√
expa.

Proposition 2.10. If r is a rational number, then exp qa = (exp a)q.

Proof. We just combine Lemmas 2.8 and 2.9. Suppose that r = p/q, where we assume q to be positive.
Then, applying those two lemmas, we have

exp
p

q
a = q

√

(exp a)p = (exp a)p/q,

as desired.
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In particular, if r is rational, this proposition implies that exp r = er. This motivates us to introduce the
alternate notation

ex = exp x.

This is the first time we have have ever written (possibly) irrational numbers in an exponent. We will define
ax for arbitrary positive numbers a as well, but we need the logarithm first.

Recall that exp is strictly increasing, continuous, and differentiable. That means it has an inverse which
is also strictly increasing, continuous and differentiable. What is the domain of this inverse? The image of
exp is the set R

+ of positive numbers, and its domain is all of R, so its inverse ought to have domain R
+

and codomain R.

Definition 2.11. The inverse function of exp is called the logarithm, and denoted by ln : R
+ → R.

Now, if r is rational and a is positive, we already knew what the notation ar means. But now, we also
have that a = eln a, so ar = (eln a)r = er ln a. On the other hand, ex lna is defined for all real x, not just for
rational numbers. This leads us to define ax by the following equation:

ax = ex ln a.

Remember that a is required to be positive, but x can be any real number. (Remember also that negative
numbers can only be raised to integer powers—the above formula does not work if a is negative because the
logarithm is not defined for negative numbers.)

Proposition 2.12. The logarithm function has the following properties:

(a) D ln(x) = 1/x

(b) ln(ab) = ln a + ln b

(c) ln ac = c ln a

Proof. We evaluate D ln by our formula for the derivative of an inverse function:

D ln(x) =
1

D exp ◦ lnx
=

1

exp ◦ lnx
=

1

x
.

Let x = ln a and y = ln b. In other words, ex = a and ex = b. We have

exey = ex+y.

Taking the logarithm of both sides, we get

ln(exey) = x + y.

Substituting back in for x and y, we get

log(ab) = log a + log b.

Now, recall the definition of exponentiation with bases other than e:

ac = ec ln a.

Taking the logarithm of both sides, we get

ln ac = c ln a.

This proves the above identities.
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Just as we introduced exponentiation with bases other than e, we can introduce logarithms to bases other
than e as well. “Logarithm to the base a,” denoted loga, is the inverse function of ax. Moreover, just as
ax is expressed in terms of exp (as ex ln a), we can express loga in terms of ln. Suppose y = loga x, so that
ay = x. That means

ey ln a = x.

Taking the (natural) logarithm of both sides, we get

y ln a = lnx.

Therefore, y = lnx/ ln a. But y = loga x, so we have the formula

loga x =
lnx

ln a
.

Proposition 2.13. D(ax) = ax ln a and D(loga x) = 1/(x ln a).

Proof. These are easy to compute:

D(ax) = D(ex ln a)

= ex ln a · ln a

= ax ln a

and

D(loga x) = D

(

lnx

ln a

)

=
1

x ln a
.

Voilà!

Finally, a note of caution. Often, calculus students are susceptible to making the erroneous calculation
D(ax) = xax−1. THIS IS WRONG!!! Anyone making this mistake in this class will be subject to public
humiliation!
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