ESG 18.014 Problem Set 1

Pramod N. Achar

Fall 1999

- 1. Prove Theorem I.7 in Apostol. (You may use Axioms 1–6 and Theorems I.1–I.6.)
- 2. Prove Theorem I.8 in Apostol. (You may use Axioms 1–6 and Theorems I.1–I.7.)
- 3. Exercise 4 in Section I 3.3 of Apostol. (You may use Axioms 1–6, Theorems I.1–I.15, and Exercises 2 and 3 in that section.)
- 4. Show how to define the operations + and \bullet on the three-element set $\mathbb{Z}_3 = \{0, 1, a\}$ so that \mathbb{Z}_3 becomes a field.
- 5. (*) Let \mathbb{Z}_4 be a set containing four elements: $\{a, b, c, d\}$. Define +: $\mathbb{Z}_4 \times \mathbb{Z}_4 \to \mathbb{Z}_4$ by the following table:

Assume that + is commutative (that is why, for example, c+b is not given in the table). Show that there is no way to define $\bullet : \mathbb{Z}_4 \times \mathbb{Z}_4 \to \mathbb{Z}_4$ such that \mathbb{Z}_4 becomes a field. (*Hint*: Which element is the 0? If there is an operation \bullet satisfying the field axioms, then one of the nonzero elements must be the 1. Show that for each possibility for 1, you can derive a contradiction to one of the theorems I.1–I.15.)