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Monday

1. Let a : Z
+ → R be a sequence, and form the new sequence σ : Z

+ → R,
called its Cesaro sequence, or its sequence of arithmetic means, by

σn =
a1 + · · · + an

n
=

1

n

n
∑

k=1

ak.

(a) Show that if {an} converges, say limn→∞ an = A, then limn→∞ σn =
A as well. (Hint: First prove it in the special case that A = 0. You
need to show, for any given ǫ > 0, how to choose an N > 0 such that
if n ≥ N , then |σn| < ǫ. Since limn→∞ an = 0, there is an M > 0
such that n ≥ M implies |an| < ǫ/2. Once you have obtained this
M , you can consider the quantity

cn =
a1 + · · · + aM−1

n
.

Since the numerator is fixed, the above quantity tends to 0 as n → ∞.
In other words, there is a P > 0 such that n ≥ P implies |cn| < ǫ/2.
Show that if you take N to be the larger of M or P , then it has the
desried property; namely, that n ≥ N implies |σn| < ǫ. Finally, prove
the statement in the general case, without making any assumptions
about A.)

(b) Find an example of sequence {an} that does not converge, but such
that its Cesaro sequence does converge. Compute the limit of its
Cesaro sequence.

(c) (Optional) Define a new sequence b : Z
+ → R by bn = (n+1)(an+1−

an). Show that if {σn} converges, and if we further assume that {bn}
converges and limn→∞ bn = 0, then {an} must converge also. (Hint:
First show that an − σn = τn−1, where {τn} is the Cesaro sequence
of {bn}. Why must {τn} converge?) (In fact, convergence of {σn}
implies convergence of {an} under even weaker hypotheses: {bn}
need only be bounded, not necessarily convergent. See Exercise 14 in
Chapter 3 of Rudin’s Principles of Mathematical Analysis for more
information.)
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2. Prove the following:

(a) lim
n→∞

(

n log
(

1 +
r

n

))

= r.

(b) lim
n→∞

(

1 +
r

n

)n

= er.

3. Exercises 2 in Section 10.4 of Apostol.

4. For what values of a does

∞
∑

k=1

ann!

nn
converge?

Wednesday

5. Exercises 1 and 2 in Section 10.9 of Apostol.

6. Exercises 1 and 4 in Section 10.16 of Apostol.

Friday

7. Exercises 1, 6, and 8 in Section 10.20 of Apostol.

Wednesday

8. Exercises 1, 3, and 9 in Section 11.13 of Apostol. You may find it helpful
to refer to the Taylor polynomial formulæ given in Sections 7.4 and 7.8.
(These formulæ are given as exercises, but you may use them without
proof.)

9. Exercise 24 in Section 11.13 of Apostol. This problem shows that a func-
tion may have a Taylor series with an infinite radius of convergence, which
nevertheless does not converge to the original function.

10. Let f : Z
+ × R → R be the sequence of functions defined by

fn(x) =
x

1 + nx2
.

Show that {fn} converges uniformly to a function F . Show also that the
sequence of derivatives {f ′

n
} also converges to some function G, but that

F ′ 6= G. Thus, even uniform convergence does not guarantee that differ-
entiation is well-behaved with respect to limits of sequences of functions.
(Hint: Find a sequence of constants Mn such that |fn(x)| ≤ Mn for all n
and x, and such that limn→∞ Mn = 0.)

Optional

11. Enjoy the winter break! (Hint: Don’t tool.)

12. What mathematical object is defined by the following? (This is an object
that you have heard of, that we will use throughout next semester, but
that we have not mentioned at all this semester.)

“A function from the Cartesian product of two initial segments
of the positive integers to some field, such as R.”
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