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These notes are a brief introduction to the use of computational tools on Athena for solving differential
equations. The brevity is due in large part to the author’s ignorance of the more sophisticated capabilities
of the software in question. Nevertheless, all three have extensive online help available, so those so inclined
should be able to exploit the full power of these software packages.

Craig Watkins has prepared some sample files for MATLAB and Maple in conjunction with his 18.03–
Independent Study notes. These can be found as follows:

athena% add 18.03-esg

athena% cd /mit/18.03-esg/watkins/matlab

— or —

athena% cd /mit/18.03-esg/watkins/maple

MATLAB

MATLAB is a purely numerical tool (as opposed to one capable of symbolic manipulation as well). Full
online documentation is available in HTML format; the command

helpdesk

starts up a web browser pointed to the table of contents of this online documentation.
The main command for solving first-order systems is of the form

[t,y] = ode23(’F’, [t0; tfinal], y0);

(In place of ode23, one could also use ode45, ode113, ode15s, and several others. These differ in the
algorithm used, the time it takes to compute the solution, and the accuracy of the answer, but the syntax
for using any of them is the same.) This solves the system

y′ = F (t,y)

numerically for t in the range t0, . . . , tfinal , subject to the initial condition y(t0) = y0. To enter a vector for
y0, enclose it in square brackets and separate the entries with semicolons:

[y0,1; y0,2; . . . ; y0,n]

Then, when you run the above ode23 command, it assigns a vector value to the variable t, and a matrix
value to y. (Of course, you could have used any other letters instead of t and z.) The size of t depends on
the algorithm used; its entries will be the values of t from t0 to tfinal at which the solution was evaluated.

The variable y is a matrix with as many columns as the order of the system, and as many rows as the
vector t. If y(t) consists of the component scalar functions y1(t), . . . , yn(t), then the entry at row i, column
j of y is equal to yj(ti), where ti is the ith entry of the vector t.

The hardest part is specifying the function F (t,y). For this, you have to create a file, called an odefile,
which contains the function definition. For example, to solve the system

y′ =

[

4 5
6 2

]

y +

[

t

t2

]

,

one would create a file called mysystem.m containing the following lines:
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function yp = mysystem(t,y)

yp = [ 4*y(1) + 5*y(2) + t; 6*y(1) + 2*y(2) + t^2];

Here, yp is a dummy function name that stands for “y-prime”—you could use any name you wanted. (A
name like yp becomes important in more complicated odefiles, but that is beyond the scope of this document.)
The t and y are also dummy variables; they just stand for the inputs to the function F . One could easily
have written

function qp = mysystem(s,z)

qp = [ 4*z(1) + 5*z(2) + s; 6*z(1) + 2*z(2) + s^2];

and the result would be exactly the same. In particular, the dummy variables in the odefile do not have to
be the same as the variables which receive the results of the computation when you enter

[t, y] = ode23(’mysystem’, [0; 6], [1; 0]);

You can examine the results of the computation just by typing t or y at the MATLAB prompt; it will
then print out the contents of these matrices for you. But of course, you would rather have a graphical plot.
The plot command takes two arguments, which should be vectors of the same length, and draws a graph
of the entries of the two vectors plotted against one another. Now, y is a matrix of size something × 2; the
syntax for extracting just one column of it as a vector is y(:,1) or y(:,2). Thus, to plot y1(t) against t,
the command is

plot(t, y(:,1));

To plot y1(t) on the horizontal axis and y2(t) on the vertical, enter

plot(y(:,1), y(:,2));

You can also plot more than one pair of variables at a time. To plot y1(t) and y2(t) simultaneously on the
veritcal axis with t on the horizontal axis, enter

plot(t, y(:,1), t, y(:,2));

Maple

To get started with Maple, instruct to load the differential equations library with the commmand

with(DEtools);

Maple contains a number of functions with names like bernoullisol, constantcoeffsol, eulersol,
linearsol, etc. for analytically solving differential equations that fit a particular form. One function of
interest is matrixDE, which solves a matrix differential equation. To solve the first-order nonhomogeneous
linear matrix equation

y′ = A(t)(y) + f(t),

one uses the syntax

matrixDE(A(t), f(t), t);

For example, the system discussed in the MATLAB section could be solved explicitly with the following
series of commands:

A := matrix(2, 2, [4, 5, 6, 2]);

matrixDE(A, [t, t^2], t);

(The first command defines the variable A to be the desired matrix. The first two arguments to the matrix

command give the number of rows and columns of the matrix.)
Maple also has a general-purpose dsolve command that tries to determine whether the given equation

fits one of the types it knows how to solve explicitly, and then tries to solve it according to that.
What about systems that cannot be solved analytically? The following command draws a phase portrait

(i.e. slope field) and particular solution curves for given initial conditions:
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phaseportrait([eqns], [dep. vars], indep. var=t0..tfinal, [[init. conds]], options);

For example, a phase portrait for the system

y′ =

[

0 1
−1 0

]

y

can be plotted with the command

phaseportrait([ diff(x(t),t) = y, diff(y(t),t) = -x ], [x, y], t=0..2*Pi,

[[x(0) = 0, y(0) = 1]], stepsize=0.1);

The following example shows how to plot more than solution curve on the phase plane by giving more than
one set of initial conditions:

f := diff(x(t),t) = y;

g := diff(y(t),t) = -x;

phaseportrait([f, g], [x, y], t=0..2*Pi, [[x(0)=0, y(0)=1],

[x(0)=2, y(0)=0]], stepsize=0.1);

Mathematica

Mathematica is arguably the most powerful of the three software packages considered here. It has a
very easy-to-use help browser with full information on everything you might ever want to know about
Mathematica. One of the most important things to realize about Mathematica is that when you are finished
entering a line, press Shift-Return, not just Return, to get Mathematica to evaluate it.

The two main Mathematica functions for solving differential equations are DSolve (for solving analyti-
cally) and NDSolve (for solving numerically). These functions have similar syntax:

DSolve[{eqns}, {dep. vars}, indep. var]

NDSolve[{eqns}, {dep. vars}, {indep. var, t0, tfinal}]

For NDSolve, the eqns must include an appropriate number of initial conditions, whereas DSolve can produce
general solutions containing arbitrary constants. For example,

DSolve[{x’[t] == y, y’[t] == -x}, {x[t], y[t]}, t]

NDSolve[{x’[t] == y, y’[t] == -x, x[0] == 0, y[0] == 1}, {x[t], y[t]},
{t, 0, 2*Pi}]

Plotting with Mathematica is slightly tricky, because the output of DSolve and NDSolve are not functions
but “rules.” Suppose we have entered the command

solution = NDSolve[{x’[t] == y, y’[t] == -x, x[0] == 0, y[0] == 1},
{x[t], y[t]}, {t, 0, 2*Pi}]

Then, the following commands would plot x(t) vs. t, both x(t) and y(t) vs. t, and y(t) vs. x(t), respectively:

Plot[Evaluate[x[t]/.solution], {t, 0, 2*Pi}]
Plot[{Evaluate[x[t]/.solution], Evaluate[y[t]/.solution]}, {t, 0, 2*Pi}]
ParametricPlot[Evaluate[{x[t], y[t]}/.solution], {t, 0, 2*Pi}]
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Exercises

1. The motion of a vertically launched projectile, in the absence of air resistance, is determined by the
equation y′′ = −9.8. Suppose instead that we live on a planet with an atmosphere, and the projectile’s
motion is actually governed by

y′′ = −9.8 − 0.0006 (y′)2.

Plot some solution curves to this equation using MATLAB. Use y(0) = 0, and try a few different values
for y′(0). (Of course, the first thing you need to do is convert it from a second-order equation to a
first-order system.)

2. Kepler’s laws of planetary motion can be used to derive the following equations of motion describing
the trajectory of a satellite about a mass located at the origin:

d2x

dt2
= −

x

(x2 + y2)3/2

d2y

dt2
= −

y

(x2 + y2)3/2

Using Maple, plot a phase portrait for this system, and several different trajectories.

3. Let x(t) and y(t) denote the populations of two competing species of animals; suppose that they are
governed by the equations

x′ = 60x − 3x2 − 4xy

y′ = 42y − 3y2 − 2xy

Investigate what happens in this system under various initial conditions.

4. Recall our discussion of mass-and-spring systems governed by an equation of the form F (x) = −kx +
βx3, rather than by Hooke’s Law. The following equations describe various mechanical systems which
deviate in other ways from Hooke’s Law. Investigate the properties of each.

x′′ = −2x′ − 20x + 5x3

x′′ = −4x + x2

x′′ = −4x + 5x3 − x5
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