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Lecture 1. Let G = SL2. Identify the weight lattice X with Z, and the dominant weights X+ with the
nonnegative integers. Under this identification, ρ = 1. Assume that p > 2.

(1) Which irreducible representations L(λ) belong to A ? to B?
(2) Find composition series for the objects ∆e,∇e ∈ O.

(3) Show that L(1)⊗ L(p− 1) belongs to A , and let T = L(1)⊗ L(p− 1) be the corresponding object
of O. Let s be the nontrivial element of the Weyl group. Show that there are short exact sequences

0→ ∆e → T → ∆s → 0,

0→ ∇s → T → ∇e → 0.

(4) Show that T is both projective and injective. Describe the ring End(T ).
(5) Show that there is an isomorphism of rings

End(Ls ⊕ T ) ∼= End(∆e ⊕ T ).

(The left-hand side involves the direct sum of all indecomposable tilting objects in O, whereas the
right-hand side involves the direct sum of all projective objects. This isomorphism expresses the fact
that O is self-Ringel-dual.)

(6) Show that there exactly five indecomposable objects in O, up to isomorphism: namely, Le, Ls, ∆e,
∇e, and T .

Lecture 2. Some of today’s exercises use tools from sheaf theory.

(1) Fix an integer n ≥ 2, and let Y be the space of n × n nilpotent matrices of rank ≤ 1. Show that
Y r {0} is a single conjugacy class of matrices. Finally, show that dimY = 2n− 2.

(2) Let

Ỹ = {(x, L) ∈ Y × Pn−1 | L ⊂ kerx}.

Show that Ỹ is a vector bundle over Pn−1, and hence smooth. Show also that the projection map
onto the first factor π : Ỹ → Y is a resolution of singularities.

(3) Compute the stalks of π∗kỸ [2n− 2]. In the case k = C, use this to compute the stalks of IC(Y ).

(4) Show that Ỹ is isomorphic as a vector bundle to the cotangent bundle T ∗Pn−1. (It might be helpful
to think of Pn−1 as a homogeneous space GLn/P , where P ⊂ GLn is a suitable parabolic subgroup.)
Deduce that its Euler class is −n. Finally, explain how π∗kỸ [2n−2] decomposes into indecomposable
objects depending on the characteristic of k.

Lecture 3.

(1) Go back and work on some more problems from Lectures 1 and 2!
(2) In Lecture 2, I briefly mentioned Williamson’s procedure for producing an integer C and a pair of

elements y, w ∈ SN such that the stalks Ew(k)|Xy and ICw(C)|Xy disagree when p divides C. Go
through the combinatorics of [6, §6] and work out some explicit examples. Can you produce an
example where C has a prime divisor larger than N? If you are stuck on this, see [5, §6].

(3) Take your example from the previous question, and convert it into a statement about multiplicities
in category O. Then lift this to a statement about representations of SLN . You should name an
explicit pair of dominant weights λ, µ for SLN , along with a list of prime numbers p > N , such that
[N(λ) : L(µ)] disagrees with the prediction of Lusztig’s conjecture in those characteristics.
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